Cascade-Net for predicting cylinder wake at Reynolds numbers ranging from subcritical to supercritical regime

级联 唤醒 雷诺数 物理 机械 能量级联 圆柱 雷诺应力 湍流 边界层 统计物理学 经典力学 几何学 数学 工程类 化学工程
作者
Junyi Mi,Xiaowei Jin,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0155649
摘要

The application of machine learning techniques embedded with fluid mechanics has gained significant attention due to their exceptional ability to tackle intricate flow dynamics problems. In this study, an energy-cascade-conceptualized network termed Cascade-Net is proposed. This model is grounded in generative adversarial networks to predict the spatiotemporal fluctuating velocity in the near-wall wake of a circular cylinder in a physics-informed manner. A comprehensive dataset is obtained by wind tunnel testing, comprising the near-wake velocity field and wall pressure of a rough circular cylinder with Reynolds numbers from subcritical to supercritical regimes. By leveraging convolutional neural networks, the Cascade-Net utilizes the pressure data, Reynolds numbers, and a few of velocity measured in the wake field to predict the spatiotemporal fluctuating velocity. The velocity fluctuations are predicted hierarchically at different resolved scales, ensuring that the energy cascade in turbulence is accurately simulated. The results show that the Cascade-Net presents good generalization performance and is capable of accurately predicting fluctuating velocity fields and the second-order moments in both extrapolation and interpolation cases at various Reynolds numbers. The mechanism of Cascade-Net in prediction is also investigated by parametric analysis in the convolutional layer and spatial attention gate, manifesting that the Cascade-Net is heavily dependent on the velocity characteristics of the larger resolved scale adjacent to target smaller scales to prediction, which interprets the success of Cascade-Net in capturing the intricate physics of the cylinder wake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斑鸠完成签到,获得积分10
1秒前
wentong完成签到,获得积分10
2秒前
深情安青应助猪猪hero采纳,获得10
2秒前
小于发布了新的文献求助10
2秒前
6秒前
6秒前
6秒前
嗨翻的冰激凌完成签到 ,获得积分10
6秒前
Liuym完成签到 ,获得积分10
7秒前
木耶发布了新的文献求助10
8秒前
肥猫完成签到,获得积分10
10秒前
11秒前
小蘑菇应助席以亦采纳,获得10
11秒前
melone发布了新的文献求助10
12秒前
研友_8Raw2Z发布了新的文献求助10
12秒前
科研通AI2S应助温赢采纳,获得10
12秒前
12秒前
何小珍关注了科研通微信公众号
13秒前
15秒前
16秒前
阔达幻丝完成签到,获得积分20
17秒前
17秒前
生动汲完成签到 ,获得积分20
17秒前
共享精神应助roclie采纳,获得10
18秒前
18秒前
研友_8Raw2Z完成签到,获得积分10
18秒前
19秒前
阳佟千青完成签到,获得积分10
19秒前
栗子完成签到,获得积分10
20秒前
妍妍发布了新的文献求助10
20秒前
猪猪hero发布了新的文献求助10
20秒前
快乐冰淇淋完成签到,获得积分10
20秒前
小白发布了新的文献求助10
21秒前
FashionBoy应助想摆就摆采纳,获得10
21秒前
陶陶完成签到,获得积分20
23秒前
卡卡西应助Orochimaru采纳,获得20
23秒前
无花果应助奋斗的夏柳采纳,获得20
24秒前
蒸馏水完成签到,获得积分10
24秒前
阳佟千青发布了新的文献求助30
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717