已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cascade-Net for predicting cylinder wake at Reynolds numbers ranging from subcritical to supercritical regime

级联 唤醒 雷诺数 物理 机械 能量级联 圆柱 雷诺应力 湍流 边界层 统计物理学 经典力学 几何学 数学 工程类 化学工程
作者
Junyi Mi,Xiaowei Jin,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0155649
摘要

The application of machine learning techniques embedded with fluid mechanics has gained significant attention due to their exceptional ability to tackle intricate flow dynamics problems. In this study, an energy-cascade-conceptualized network termed Cascade-Net is proposed. This model is grounded in generative adversarial networks to predict the spatiotemporal fluctuating velocity in the near-wall wake of a circular cylinder in a physics-informed manner. A comprehensive dataset is obtained by wind tunnel testing, comprising the near-wake velocity field and wall pressure of a rough circular cylinder with Reynolds numbers from subcritical to supercritical regimes. By leveraging convolutional neural networks, the Cascade-Net utilizes the pressure data, Reynolds numbers, and a few of velocity measured in the wake field to predict the spatiotemporal fluctuating velocity. The velocity fluctuations are predicted hierarchically at different resolved scales, ensuring that the energy cascade in turbulence is accurately simulated. The results show that the Cascade-Net presents good generalization performance and is capable of accurately predicting fluctuating velocity fields and the second-order moments in both extrapolation and interpolation cases at various Reynolds numbers. The mechanism of Cascade-Net in prediction is also investigated by parametric analysis in the convolutional layer and spatial attention gate, manifesting that the Cascade-Net is heavily dependent on the velocity characteristics of the larger resolved scale adjacent to target smaller scales to prediction, which interprets the success of Cascade-Net in capturing the intricate physics of the cylinder wake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maomaoya发布了新的文献求助10
1秒前
完美时间线完成签到,获得积分10
2秒前
3秒前
泡泡儿完成签到 ,获得积分10
5秒前
华仔应助无谓采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
脑洞疼应助Sherry采纳,获得10
10秒前
11秒前
11秒前
LJH完成签到,获得积分20
11秒前
yu777完成签到,获得积分10
11秒前
11秒前
正直敏完成签到,获得积分10
12秒前
14秒前
123456发布了新的文献求助10
15秒前
Gufer完成签到,获得积分10
15秒前
blue发布了新的文献求助10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
相识完成签到,获得积分10
18秒前
博雅完成签到,获得积分10
20秒前
橘猫爱笑完成签到 ,获得积分10
20秒前
21秒前
小二郎应助blueweier采纳,获得10
21秒前
21秒前
希望天下0贩的0应助justice采纳,获得10
23秒前
子车茗应助123456采纳,获得20
25秒前
blue完成签到,获得积分10
25秒前
靓丽谷南发布了新的文献求助10
25秒前
慕薯殿焚发布了新的文献求助10
27秒前
su完成签到 ,获得积分10
28秒前
amier完成签到,获得积分10
28秒前
猪猪hero应助负责的方盒采纳,获得10
29秒前
29秒前
30秒前
小二郎应助诗蕊采纳,获得20
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153