Cascade-Net for predicting cylinder wake at Reynolds numbers ranging from subcritical to supercritical regime

级联 唤醒 雷诺数 物理 机械 能量级联 圆柱 雷诺应力 湍流 边界层 统计物理学 经典力学 几何学 数学 工程类 化学工程
作者
Junyi Mi,Xiaowei Jin,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0155649
摘要

The application of machine learning techniques embedded with fluid mechanics has gained significant attention due to their exceptional ability to tackle intricate flow dynamics problems. In this study, an energy-cascade-conceptualized network termed Cascade-Net is proposed. This model is grounded in generative adversarial networks to predict the spatiotemporal fluctuating velocity in the near-wall wake of a circular cylinder in a physics-informed manner. A comprehensive dataset is obtained by wind tunnel testing, comprising the near-wake velocity field and wall pressure of a rough circular cylinder with Reynolds numbers from subcritical to supercritical regimes. By leveraging convolutional neural networks, the Cascade-Net utilizes the pressure data, Reynolds numbers, and a few of velocity measured in the wake field to predict the spatiotemporal fluctuating velocity. The velocity fluctuations are predicted hierarchically at different resolved scales, ensuring that the energy cascade in turbulence is accurately simulated. The results show that the Cascade-Net presents good generalization performance and is capable of accurately predicting fluctuating velocity fields and the second-order moments in both extrapolation and interpolation cases at various Reynolds numbers. The mechanism of Cascade-Net in prediction is also investigated by parametric analysis in the convolutional layer and spatial attention gate, manifesting that the Cascade-Net is heavily dependent on the velocity characteristics of the larger resolved scale adjacent to target smaller scales to prediction, which interprets the success of Cascade-Net in capturing the intricate physics of the cylinder wake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Jeff_Lin采纳,获得10
1秒前
michaelbishop完成签到 ,获得积分10
1秒前
2秒前
小二郎应助123采纳,获得10
3秒前
香蕉觅云应助哈哈采纳,获得10
3秒前
3秒前
4秒前
汉堡包应助高高的采蓝采纳,获得10
5秒前
乐乐应助皓首穷经采纳,获得10
5秒前
5秒前
韩立发布了新的文献求助10
5秒前
科研通AI2S应助海洋饼干42采纳,获得10
5秒前
今后应助迷失月亮岛采纳,获得10
5秒前
6秒前
6秒前
wait完成签到,获得积分10
7秒前
7秒前
9秒前
Txs发布了新的文献求助20
9秒前
9秒前
水蜜桃幽灵完成签到,获得积分10
10秒前
Ki_Ayasato发布了新的文献求助10
10秒前
今后应助小新采纳,获得10
10秒前
10秒前
Chen发布了新的文献求助10
11秒前
11秒前
王子语发布了新的文献求助10
11秒前
xiaa发布了新的文献求助10
11秒前
12秒前
小_高发布了新的文献求助10
12秒前
无极微光应助含糊的梦槐采纳,获得20
13秒前
三岁半完成签到 ,获得积分10
13秒前
13秒前
xxwyj发布了新的文献求助10
13秒前
14秒前
外向渊思发布了新的文献求助10
15秒前
Lucas应助瘦瘦凌晴采纳,获得10
15秒前
忧虑的勒发布了新的文献求助10
15秒前
JamesPei应助Costing采纳,获得10
15秒前
老八别学了完成签到,获得积分10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145745
求助须知:如何正确求助?哪些是违规求助? 4342946
关于积分的说明 13524885
捐赠科研通 4183949
什么是DOI,文献DOI怎么找? 2294322
邀请新用户注册赠送积分活动 1294744
关于科研通互助平台的介绍 1237801