亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cascade-Net for predicting cylinder wake at Reynolds numbers ranging from subcritical to supercritical regime

级联 唤醒 雷诺数 物理 机械 能量级联 圆柱 雷诺应力 湍流 边界层 统计物理学 经典力学 几何学 数学 工程类 化学工程
作者
Junyi Mi,Xiaowei Jin,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0155649
摘要

The application of machine learning techniques embedded with fluid mechanics has gained significant attention due to their exceptional ability to tackle intricate flow dynamics problems. In this study, an energy-cascade-conceptualized network termed Cascade-Net is proposed. This model is grounded in generative adversarial networks to predict the spatiotemporal fluctuating velocity in the near-wall wake of a circular cylinder in a physics-informed manner. A comprehensive dataset is obtained by wind tunnel testing, comprising the near-wake velocity field and wall pressure of a rough circular cylinder with Reynolds numbers from subcritical to supercritical regimes. By leveraging convolutional neural networks, the Cascade-Net utilizes the pressure data, Reynolds numbers, and a few of velocity measured in the wake field to predict the spatiotemporal fluctuating velocity. The velocity fluctuations are predicted hierarchically at different resolved scales, ensuring that the energy cascade in turbulence is accurately simulated. The results show that the Cascade-Net presents good generalization performance and is capable of accurately predicting fluctuating velocity fields and the second-order moments in both extrapolation and interpolation cases at various Reynolds numbers. The mechanism of Cascade-Net in prediction is also investigated by parametric analysis in the convolutional layer and spatial attention gate, manifesting that the Cascade-Net is heavily dependent on the velocity characteristics of the larger resolved scale adjacent to target smaller scales to prediction, which interprets the success of Cascade-Net in capturing the intricate physics of the cylinder wake.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助迷路的尔竹采纳,获得10
4秒前
Yygz314完成签到,获得积分10
4秒前
liuynnn完成签到,获得积分20
5秒前
webmaster完成签到,获得积分10
9秒前
NexusExplorer应助坩埚甘茶白采纳,获得10
12秒前
阳光迎夏完成签到 ,获得积分10
14秒前
14秒前
充电宝应助xuz采纳,获得10
16秒前
16秒前
益笙鸿老板完成签到 ,获得积分10
17秒前
SiboN完成签到,获得积分10
18秒前
张流筝完成签到 ,获得积分10
18秒前
18秒前
高兴可乐完成签到,获得积分20
23秒前
liuynnn发布了新的文献求助10
24秒前
平凡完成签到,获得积分10
25秒前
wanci应助开朗问晴采纳,获得10
25秒前
29秒前
35秒前
所所应助xuz采纳,获得10
36秒前
华仔应助Bokuto采纳,获得10
38秒前
老王发布了新的文献求助10
43秒前
充电宝应助江经纬采纳,获得10
43秒前
李爱国应助强健的长颈鹿采纳,获得10
47秒前
戳戳完成签到 ,获得积分10
49秒前
搜集达人应助德尔塔捱斯采纳,获得10
51秒前
完美世界应助xuz采纳,获得10
54秒前
55秒前
科目三应助xalone采纳,获得10
58秒前
59秒前
1分钟前
111关闭了111文献求助
1分钟前
1分钟前
lokiyyy完成签到,获得积分10
1分钟前
时光机带哥走完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ding应助清浅采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881