Cascade-Net for predicting cylinder wake at Reynolds numbers ranging from subcritical to supercritical regime

级联 唤醒 雷诺数 物理 机械 能量级联 圆柱 雷诺应力 湍流 边界层 统计物理学 经典力学 几何学 数学 工程类 化学工程
作者
Junyi Mi,Xiaowei Jin,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0155649
摘要

The application of machine learning techniques embedded with fluid mechanics has gained significant attention due to their exceptional ability to tackle intricate flow dynamics problems. In this study, an energy-cascade-conceptualized network termed Cascade-Net is proposed. This model is grounded in generative adversarial networks to predict the spatiotemporal fluctuating velocity in the near-wall wake of a circular cylinder in a physics-informed manner. A comprehensive dataset is obtained by wind tunnel testing, comprising the near-wake velocity field and wall pressure of a rough circular cylinder with Reynolds numbers from subcritical to supercritical regimes. By leveraging convolutional neural networks, the Cascade-Net utilizes the pressure data, Reynolds numbers, and a few of velocity measured in the wake field to predict the spatiotemporal fluctuating velocity. The velocity fluctuations are predicted hierarchically at different resolved scales, ensuring that the energy cascade in turbulence is accurately simulated. The results show that the Cascade-Net presents good generalization performance and is capable of accurately predicting fluctuating velocity fields and the second-order moments in both extrapolation and interpolation cases at various Reynolds numbers. The mechanism of Cascade-Net in prediction is also investigated by parametric analysis in the convolutional layer and spatial attention gate, manifesting that the Cascade-Net is heavily dependent on the velocity characteristics of the larger resolved scale adjacent to target smaller scales to prediction, which interprets the success of Cascade-Net in capturing the intricate physics of the cylinder wake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
我是老大应助文献下载中采纳,获得10
2秒前
Xixi完成签到 ,获得积分10
3秒前
4秒前
知性的十三完成签到,获得积分10
4秒前
I1waml发布了新的文献求助10
6秒前
7秒前
MJ完成签到 ,获得积分10
9秒前
12秒前
搜集达人应助mumu采纳,获得10
15秒前
liliziwei完成签到,获得积分20
17秒前
1459发布了新的文献求助10
19秒前
无花果应助胖胖采纳,获得10
20秒前
liliziwei发布了新的文献求助10
20秒前
LiuJinhui完成签到,获得积分10
27秒前
27秒前
29秒前
竹焚完成签到 ,获得积分10
32秒前
32秒前
BJ_whc发布了新的文献求助10
33秒前
茂茂357发布了新的文献求助10
33秒前
33秒前
37秒前
38秒前
小萌发布了新的文献求助10
38秒前
研友_VZG7GZ应助陈运气采纳,获得10
43秒前
多情的元容完成签到,获得积分10
51秒前
51秒前
幸福大白发布了新的文献求助10
53秒前
陈运气发布了新的文献求助10
55秒前
奇迹探索者完成签到,获得积分10
57秒前
茂茂357完成签到,获得积分10
58秒前
1分钟前
小马甲应助堀江真夏采纳,获得10
1分钟前
传奇3应助紫色奶萨采纳,获得10
1分钟前
脑洞疼应助奇迹探索者采纳,获得10
1分钟前
幸福遥完成签到,获得积分10
1分钟前
花花燕发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129