亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach

医学 接收机工作特性 逻辑回归 败血症 急性肾损伤 重症监护室 队列 来复枪 曲线下面积 多层感知器 机器学习 随机森林 人工智能 内科学 急诊医学 重症监护医学 计算机科学 人工神经网络 考古 历史
作者
Zhiyan Fan,Jiamei Jiang,Xiao Chen,Youlei Chen,Quan Xia,Juan Wang,Mengjuan Fang,Zesheng Wu,Fanghui Chen
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:13
标识
DOI:10.1186/s12967-023-04205-4
摘要

Acute kidney injury (AKI) is a common complication in critically ill patients with sepsis and is often associated with a poor prognosis. We aimed to construct and validate an interpretable prognostic prediction model for patients with sepsis-associated AKI (S-AKI) using machine learning (ML) methods.Data on the training cohort were collected from the Medical Information Mart for Intensive Care IV database version 2.2 to build the model, and data of patients were extracted from Hangzhou First People's Hospital Affiliated to Zhejiang University School of Medicine for external validation of model. Predictors of mortality were identified using Recursive Feature Elimination (RFE). Then, random forest, extreme gradient boosting (XGBoost), multilayer perceptron classifier, support vector classifier, and logistic regression were used to establish a prognosis prediction model for 7, 14, and 28 days after intensive care unit (ICU) admission, respectively. Prediction performance was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) were used to interpret the ML models.In total, 2599 patients with S-AKI were included in the analysis. Forty variables were selected for the model development. According to the areas under the ROC curve (AUC) and DCA results for the training cohort, XGBoost model exhibited excellent performance with F1 Score of 0.847, 0.715, 0.765 and AUC (95% CI) of 0.91 (0.90, 0.92), 0.78 (0.76, 0.80), and 0.83 (0.81, 0.85) in 7 days, 14 days and 28 days group, respectively. It also demonstrated excellent discrimination in the external validation cohort. Its AUC (95% CI) was 0.81 (0.79, 0.83), 0.75 (0.73, 0.77), 0.79 (0.77, 0.81) in 7 days, 14 days and 28 days group, respectively. SHAP-based summary plot and force plot were used to interpret the XGBoost model globally and locally.ML is a reliable tool for predicting the prognosis of patients with S-AKI. SHAP methods were used to explain intrinsic information of the XGBoost model, which may prove clinically useful and help clinicians tailor precise management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助陈媛采纳,获得10
19秒前
章鱼完成签到,获得积分10
29秒前
2分钟前
陈媛发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分10
3分钟前
5分钟前
PD完成签到,获得积分10
5分钟前
5分钟前
6分钟前
义气的书雁完成签到,获得积分10
6分钟前
6分钟前
andrele发布了新的文献求助10
7分钟前
谦也静熵完成签到,获得积分10
8分钟前
通科研完成签到 ,获得积分10
8分钟前
10分钟前
andrele发布了新的文献求助10
10分钟前
陈媛发布了新的文献求助10
10分钟前
sasa发布了新的文献求助10
10分钟前
sasa完成签到,获得积分10
10分钟前
满地枫叶完成签到,获得积分20
11分钟前
joanna完成签到,获得积分10
11分钟前
满地枫叶发布了新的文献求助10
12分钟前
12分钟前
M先生完成签到,获得积分10
12分钟前
12分钟前
12分钟前
tlx发布了新的文献求助10
13分钟前
13分钟前
13分钟前
13分钟前
13分钟前
13分钟前
小圆圈发布了新的文献求助30
14分钟前
兴奋的宛亦完成签到,获得积分20
14分钟前
zhanglongfei发布了新的文献求助10
14分钟前
14分钟前
小圆圈发布了新的文献求助10
14分钟前
14分钟前
小圆圈发布了新的文献求助10
14分钟前
李健的小迷弟应助小圆圈采纳,获得10
14分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757