Influential Community Search over Large Heterogeneous Information Networks

顶点(图论) 计算机科学 同种类的 修剪 图形 光学(聚焦) 理论计算机科学 组合数学 数学 情报检索 农学 生物 光学 物理
作者
Yingli Zhou,Yixiang Fang,Wensheng Luo,Yunming Ye
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:16 (8): 2047-2060 被引量:14
标识
DOI:10.14778/3594512.3594532
摘要

Recently, the topic of influential community search has gained much attention. Given a graph, it aims to find communities of vertices with high importance values from it. Existing works mainly focus on conventional homogeneous networks, where vertices are of the same type. Thus, they cannot be applied to heterogeneous information networks (HINs) like bibliographic networks and knowledge graphs, where vertices are of multiple types and their importance values are of heterogeneity (i.e., for vertices of different types, their importance meanings are also different). In this paper, we study the problem of influential community search over large HINs. We introduce a novel community model, called heterogeneous influential community (HIC), or a set of closely connected vertices that are of the same type and high importance values, using the meta-path-based core model. An HIC not only captures the importance of vertices in a community, but also considers the influence on meta-paths connecting them. To search the HICs, we mainly consider meta-paths with two and three vertex types. Then, we develop basic algorithms by iteratively peeling vertices with low importance values, and further propose advanced algorithms by identifying the key vertices and designing pruning strategies that allow us to quickly eliminate vertices with low importance values. Extensive experiments on four real large HINs show that our solutions are effective for searching HICs, and the advanced algorithms significantly outperform baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
123456发布了新的文献求助10
1秒前
keyan应助温柔嚣张采纳,获得10
2秒前
姜黄发布了新的文献求助10
2秒前
3秒前
无花果应助HJJHJH采纳,获得10
3秒前
zan发布了新的文献求助30
4秒前
111发布了新的文献求助10
4秒前
松与杉发布了新的文献求助30
4秒前
无极微光应助无限的绮晴采纳,获得20
5秒前
hangboy发布了新的文献求助10
5秒前
熬夜波比应助文丽采纳,获得10
5秒前
wanci应助陶醉铁身采纳,获得10
5秒前
6秒前
废废废完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
考博圣体发布了新的文献求助10
8秒前
科目三应助幽默的蜡烛采纳,获得10
9秒前
玩命的赛君完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
11秒前
张巨锋发布了新的文献求助10
11秒前
13秒前
TigerOvO完成签到,获得积分10
13秒前
眼睛大樱桃完成签到,获得积分10
13秒前
楠楠发布了新的文献求助10
13秒前
清脆如天关注了科研通微信公众号
14秒前
cookingmouse发布了新的文献求助10
15秒前
15秒前
露露完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277