可逆矩阵
控制理论(社会学)
特征向量
国家(计算机科学)
转化(遗传学)
理论(学习稳定性)
数学
能量(信号处理)
订单(交换)
优化设计
切换时间
应用数学
计算机科学
算法
纯数学
物理
控制(管理)
财务
人工智能
经济
生物化学
化学
统计
光电子学
量子力学
机器学习
基因
作者
Xiaolan Yuan,Yusheng Zhou
标识
DOI:10.1016/j.amc.2023.128195
摘要
In this paper, an optimal state-dependent switching rule design method is proposed for the fastest asymptotic stabilization of second-order switched systems, wherein all eigenvalues of each subsystem are positive real parts. First, the definition of an optimal invertible transformation is proposed based on the physical meaning of a vibrational system with one degree-of-freedom. Then, the formulas of both the optimal invertible transformations and the optimal switching lines are calculated. In this way, the designed optimal state-dependent switching rule can minimize the energy increment of unstable subsystem operation and maximize the energy loss of system switching simultaneously, achieving the fastest asymptotic stability. Moreover, the critical stability condition for a general switched system is investigated, demonstrating that this state-dependent switching rule is optimal. Finally, three examples are provided to verify the effectiveness and superiority of the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI