An interpretable machine learning approach for predicting 30-day readmission after stroke

医学 冲程(发动机) 可解释性 接收机工作特性 队列 机器学习 内科学 急诊医学 计算机科学 机械工程 工程类
作者
Ji Lv,Mengmeng Zhang,Yujie Fu,Mengshuang Chen,Binjie Chen,Zhiyuan Xu,Xianliang Yan,Shuqun Hu,Ningjun Zhao
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:174: 105050-105050 被引量:13
标识
DOI:10.1016/j.ijmedinf.2023.105050
摘要

Stroke is the second leading cause of death worldwide and has a significantly high recurrence rate. We aimed to identify risk factors for stroke recurrence and develop an interpretable machine learning model to predict 30-day readmissions after stroke.Stroke patients deposited in electronic health records (EHRs) in Xuzhou Medical University Hospital between February 1, 2021, and November 30, 2021, were included in the study, and deceased patients were excluded. We extracted 74 features from EHRs, and the top 20 features (chi-2 value) were used to build machine learning models. 80% of the patients were used for pre-training. Subsequently, a 20% holdout dataset was used for verification. The Shapley Additive exPlanations (SHAP) method was used to explore the interpretability of the model.The cohort included 6,558 patients, of whom the mean (SD) age was 65 (11) years, 3,926 were males (59.86 %), and 132 (2.01 %) were readmitted within 30 days. The area under the receiver operating characteristic curve (AUROC) for the optimized model was 0.80 (95 % CI 0.68-0.80). We used the SHAP method to identify the top 10 risk factors (i.e., severe carotid artery stenosis, weak, homocysteine, glycosylated hemoglobin, sex, lymphocyte percentage, neutrophilic granulocyte percentage, urine glucose, fresh cerebral infarction, and red blood cell count). The AUROC of a model with the 10 features was 0.80 (95 % CI 0.69-0.80) and was not significantly different from that of the model with 20 risk factors.Our methods not only showed good performance in predicting 30-day readmissions after stroke but also revealed risk factors that provided valuable insights for treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guan发布了新的文献求助10
刚刚
1秒前
1秒前
小橙子发布了新的文献求助10
2秒前
睡洋洋发布了新的文献求助10
2秒前
Robert发布了新的文献求助10
2秒前
2秒前
3秒前
李健应助yucj采纳,获得10
3秒前
贪玩的誉完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
dzc完成签到,获得积分10
5秒前
5秒前
Wwwww发布了新的文献求助10
5秒前
lxseva发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
六点发布了新的文献求助10
6秒前
MBL完成签到,获得积分10
6秒前
齐桉完成签到 ,获得积分10
7秒前
睿诺应助guan采纳,获得10
7秒前
zlqq完成签到 ,获得积分10
7秒前
可爱的函函应助六金采纳,获得10
7秒前
小于发布了新的文献求助10
8秒前
8秒前
hkh发布了新的文献求助10
8秒前
8秒前
复杂若男发布了新的文献求助10
9秒前
yu5546发布了新的文献求助10
9秒前
CipherSage应助悦耳溪流采纳,获得10
9秒前
9秒前
拔丝香芋完成签到,获得积分10
10秒前
aiiLuX完成签到,获得积分10
10秒前
美好斓发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
猴猴完成签到,获得积分10
11秒前
daliu完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326