已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An interpretable machine learning approach for predicting 30-day readmission after stroke

医学 冲程(发动机) 可解释性 接收机工作特性 队列 机器学习 内科学 急诊医学 计算机科学 机械工程 工程类
作者
Ji Lv,Mengmeng Zhang,Yujie Fu,Mengshuang Chen,Binjie Chen,Zhiyuan Xu,Xianliang Yan,Shuqun Hu,Ningjun Zhao
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:174: 105050-105050 被引量:13
标识
DOI:10.1016/j.ijmedinf.2023.105050
摘要

Stroke is the second leading cause of death worldwide and has a significantly high recurrence rate. We aimed to identify risk factors for stroke recurrence and develop an interpretable machine learning model to predict 30-day readmissions after stroke.Stroke patients deposited in electronic health records (EHRs) in Xuzhou Medical University Hospital between February 1, 2021, and November 30, 2021, were included in the study, and deceased patients were excluded. We extracted 74 features from EHRs, and the top 20 features (chi-2 value) were used to build machine learning models. 80% of the patients were used for pre-training. Subsequently, a 20% holdout dataset was used for verification. The Shapley Additive exPlanations (SHAP) method was used to explore the interpretability of the model.The cohort included 6,558 patients, of whom the mean (SD) age was 65 (11) years, 3,926 were males (59.86 %), and 132 (2.01 %) were readmitted within 30 days. The area under the receiver operating characteristic curve (AUROC) for the optimized model was 0.80 (95 % CI 0.68-0.80). We used the SHAP method to identify the top 10 risk factors (i.e., severe carotid artery stenosis, weak, homocysteine, glycosylated hemoglobin, sex, lymphocyte percentage, neutrophilic granulocyte percentage, urine glucose, fresh cerebral infarction, and red blood cell count). The AUROC of a model with the 10 features was 0.80 (95 % CI 0.69-0.80) and was not significantly different from that of the model with 20 risk factors.Our methods not only showed good performance in predicting 30-day readmissions after stroke but also revealed risk factors that provided valuable insights for treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samsahpiyaz发布了新的文献求助10
刚刚
刚刚
纪星星完成签到 ,获得积分10
刚刚
顾矜应助月Y采纳,获得30
1秒前
uppercrusteve发布了新的文献求助10
5秒前
10秒前
10秒前
今后应助北风野很冷采纳,获得10
12秒前
挚智完成签到 ,获得积分10
13秒前
lty发布了新的文献求助10
13秒前
JJB发布了新的文献求助10
16秒前
17秒前
21秒前
21秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
23秒前
阿峤完成签到,获得积分10
25秒前
26秒前
草木完成签到 ,获得积分10
26秒前
28秒前
JTB发布了新的文献求助10
33秒前
35秒前
36秒前
lty完成签到,获得积分10
37秒前
幸运幸福完成签到,获得积分10
41秒前
jessie发布了新的文献求助30
41秒前
uppercrusteve发布了新的文献求助10
41秒前
41秒前
42秒前
YAYA发布了新的文献求助10
44秒前
旺仔发布了新的文献求助30
46秒前
rrrrrrry发布了新的文献求助20
46秒前
49秒前
53秒前
jessie完成签到,获得积分10
53秒前
uppercrusteve完成签到,获得积分10
54秒前
嗯哼发布了新的文献求助20
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126