亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable machine learning approach for predicting 30-day readmission after stroke

医学 冲程(发动机) 可解释性 接收机工作特性 队列 机器学习 内科学 急诊医学 计算机科学 机械工程 工程类
作者
Ji Lv,Mengmeng Zhang,Yujie Fu,Mengshuang Chen,Binjie Chen,Zhiyuan Xu,Xianliang Yan,Shuqun Hu,Ningjun Zhao
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:174: 105050-105050 被引量:7
标识
DOI:10.1016/j.ijmedinf.2023.105050
摘要

Stroke is the second leading cause of death worldwide and has a significantly high recurrence rate. We aimed to identify risk factors for stroke recurrence and develop an interpretable machine learning model to predict 30-day readmissions after stroke.Stroke patients deposited in electronic health records (EHRs) in Xuzhou Medical University Hospital between February 1, 2021, and November 30, 2021, were included in the study, and deceased patients were excluded. We extracted 74 features from EHRs, and the top 20 features (chi-2 value) were used to build machine learning models. 80% of the patients were used for pre-training. Subsequently, a 20% holdout dataset was used for verification. The Shapley Additive exPlanations (SHAP) method was used to explore the interpretability of the model.The cohort included 6,558 patients, of whom the mean (SD) age was 65 (11) years, 3,926 were males (59.86 %), and 132 (2.01 %) were readmitted within 30 days. The area under the receiver operating characteristic curve (AUROC) for the optimized model was 0.80 (95 % CI 0.68-0.80). We used the SHAP method to identify the top 10 risk factors (i.e., severe carotid artery stenosis, weak, homocysteine, glycosylated hemoglobin, sex, lymphocyte percentage, neutrophilic granulocyte percentage, urine glucose, fresh cerebral infarction, and red blood cell count). The AUROC of a model with the 10 features was 0.80 (95 % CI 0.69-0.80) and was not significantly different from that of the model with 20 risk factors.Our methods not only showed good performance in predicting 30-day readmissions after stroke but also revealed risk factors that provided valuable insights for treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zsj采纳,获得10
4秒前
28秒前
zsj发布了新的文献求助10
34秒前
小巫发布了新的文献求助10
53秒前
Jack80发布了新的文献求助700
1分钟前
athena发布了新的文献求助30
1分钟前
小妮完成签到 ,获得积分10
1分钟前
athena发布了新的文献求助30
1分钟前
充电宝应助杰帅采纳,获得10
1分钟前
1分钟前
杰帅发布了新的文献求助10
2分钟前
勇敢虫子不怕困难完成签到,获得积分10
2分钟前
充电宝应助杰帅采纳,获得10
2分钟前
小巫发布了新的文献求助10
2分钟前
人文完成签到 ,获得积分10
2分钟前
魏白晴完成签到,获得积分10
5分钟前
周青春偶像完成签到 ,获得积分10
5分钟前
饱满语风完成签到 ,获得积分10
6分钟前
科研通AI2S应助啊呜采纳,获得10
6分钟前
善学以致用应助zhangxr采纳,获得10
7分钟前
leslie完成签到 ,获得积分10
7分钟前
科研通AI2S应助showrain采纳,获得10
7分钟前
7分钟前
姚芭蕉完成签到 ,获得积分0
8分钟前
8分钟前
Jason发布了新的文献求助10
8分钟前
小强完成签到 ,获得积分10
8分钟前
华仔应助Jason采纳,获得10
8分钟前
8分钟前
mengyuhuan完成签到 ,获得积分0
8分钟前
fleeper发布了新的文献求助10
8分钟前
DrCuiTianjin完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
lik发布了新的文献求助10
10分钟前
10分钟前
科研通AI2S应助lik采纳,获得10
10分钟前
小巫发布了新的文献求助10
10分钟前
dolphin完成签到 ,获得积分0
10分钟前
11分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159