杰纳斯
自愈水凝胶
胶粘剂
材料科学
粘弹性
甲基丙烯酸酯
生物粘附
生物医学工程
纳米技术
化学工程
药物输送
高分子化学
复合材料
聚合
聚合物
医学
图层(电子)
工程类
作者
Yuanbo Jia,Jinteng Feng,Zhe Feng,Jingyi Liu,Yanshen Yang,Xiaokang Li,Meng Lei,Hui Guo,Zhao Wei,Yi Lv,Feng Xu
标识
DOI:10.1073/pnas.2219024120
摘要
Postoperative adhesions occur widely in various tissues, bringing the risk of secondary surgery and increased medical burden. Hydrogel barriers with Janus-adhesive ability can achieve physical isolation of adjacent tissues and are therefore considered an ideal solution. However, integrating endoscopic delivery convenience and viscoelastic Janus hydrogel formation remains a great challenge. Here, we present a report of the in situ formation of Janus-adhesive hydrogel barrier using a sprayable fast-Janus-gelation (FJG) powder. We first methacrylate the polysaccharide macromolecules to break the intermolecular hydrogen bonds and impart the ability of rapid hydration. FJG powder can rapidly absorb interfacial water and crosslink through borate ester bonds, forming a toughly adhesive viscoelastic hydrogel. The Janus barrier can be simply formed by further hydrating the upper powder with cationic solution. We construct rat models to demonstrate the antiadhesions efficiency of viscoelastic FJG hydrogels in organs with different motion modalities (e.g., intestine, heart, liver). We also developed a low-cost delivery device with a standardized surgical procedure and further validated the feasibility and effectiveness of FJG powder in minimally invasive surgery using a preclinical translational porcine model. Considering the advantages in terms of therapeutic efficacy, clinical convenience, and commercialization, our results reveal the great potential of Janus-gelation powder materials as a next-generation antiadhesions barrier.
科研通智能强力驱动
Strongly Powered by AbleSci AI