弗洛奎特理论
格子(音乐)
物理
方格
光子晶体
反射对称性
光学
凝聚态物理
量子力学
几何学
数学
声学
伊辛模型
非线性系统
标识
DOI:10.1016/j.optcom.2023.129333
摘要
In this paper, we theoretically study the Floquet engineering of two dimensional photonic waveguide arrays in three types of lattices: honeycomb lattice with Kekulé distortion, breathing square lattice and breathing Kagome lattice. The Kekulé distortion factor or the breathing factor in the corresponding lattice is periodically changed along the axial direction of the photonic waveguide with frequency ω. Within certain ranges of ω, the Floquet corner states in the Floquet band gap of quasi-energy spectrum are found, which are localized at the corner of the finite two-dimensional arrays. Due to particle-hole symmetry in the model of honeycomb and square lattice, the quasi-energy level of the Floquet π corner states is ±ω/2. On the other hand, Kagome lattice does not have particle-hole symmetry, so that the quasi-energy level of the Floquet ±2π/3 corner states is near to ±1ω/3. The corner states are either protected by crystalline symmetry or reflection symmetry. The finding of Floquet fractional-π corner states could provide more options for engineering of on-chip photonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI