亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Frequency Estimation Mechanisms Under ϵδ-Utility-Optimized Local Differential Privacy

差别隐私 计算机科学 估计 数据挖掘 计算机安全 管理 经济
作者
Yue Zhang,Youwen Zhu,Yuqian Zhou,Jiabin Yuan
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 316-327 被引量:8
标识
DOI:10.1109/tetc.2023.3238839
摘要

Frequency estimation mechanisms are widely applied in domains such as machine learning and cloud computing, where it is desirable to provide statistical information. As a fundamental operation in these domains, frequency estimation utilizes personal data which contains sensitive information while it is necessary to protect sensitive information from others. Motivated by this, we preserve user's privacy with local differential privacy by obfuscating personal data on the user side. In this paper, we propose frequency estimation mechanisms under utility-optimized local differential privacy (ULDP), which allow the data collector to obtain some non-sensitive values to improve data utility while protecting sensitive values from leaking sensitive information. We propose three frequency estimation mechanisms under $(\epsilon,\delta)$ -ULDP (uRFM-GRR, uRFM-RAPPOR, uRFM-OLH) to preserve user's sensitive information. Our proposed mechanisms protect sensitive data with the same privacy guarantee and they are suitable for different scenarios. Besides, in theory, we compare the estimation errors of our proposed mechanisms with existing LDP based mechanisms and show that ours are lower than theirs. Finally, we conduct experiments on synthetic and real-world datasets to evaluate the performance of the three mechanisms. The experimental results demonstrate that our proposed mechanisms are better than the existing LDP based solutions over the same privacy level, while uRFM-OLH frequently performs the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
萝卜猪完成签到,获得积分10
41秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
57秒前
1分钟前
1分钟前
FashionBoy应助迅速的岩采纳,获得10
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
1分钟前
在水一方应助迅速的岩采纳,获得10
2分钟前
科研通AI2S应助Yuuw采纳,获得10
2分钟前
YONGGE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
无虞完成签到,获得积分10
3分钟前
在水一方应助研友_R2D2采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
生姜批发刘哥完成签到 ,获得积分0
4分钟前
朴实剑通完成签到 ,获得积分10
4分钟前
梓歆发布了新的文献求助30
4分钟前
九司应助研友_R2D2采纳,获得10
4分钟前
发发完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
4分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
梓歆发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553