Enhancing cotton whitefly (Bemisia tabaci) detection and counting with a cost-effective deep learning approach on the Raspberry Pi

粉虱 深度学习 人工智能 破碎机 预处理器 计算机科学 作物 生物 农业工程 农学 园艺 工程类 机械工程
作者
Zhen Feng,Nan Wang,Ying Jin,Haijuan Cao,Xia Huang,Shuhan Wen,Mingquan Ding
出处
期刊:Plant Methods [Springer Nature]
卷期号:20 (1)
标识
DOI:10.1186/s13007-024-01286-0
摘要

Abstract Background The cotton whitefly ( Bemisia tabaci ) is a major global pest, causing significant crop damage through viral infestation and feeding. Traditional B. tabaci recognition relies on human eyes, which requires a large amount of work and high labor costs. The pests overlapping generations, high reproductive capacity, small size, and migratory behavior present challenges for the real-time monitoring and early warning systems. This study aims to develop an efficient, high-throughput automated system for detection of the cotton whiteflies. In this work, a novel tool for cotton whitefly fast identification and quantification was developed based on deep learning-based model. This approach enhances the effectiveness of B. tabaci control by facilitating earlier detection of its establishment in cotton, thereby allowing for a quicker implementation of management strategies. Results We compiled a dataset of 1200 annotated images of whiteflies on cotton leaves, augmented using techniques like flipping and rotation. We modified the YOLO v8s model by replacing the C2f module with the Swin-Transformer and introducing a P2 structure in the Head, achieving a precision of 0.87, mAP 50 of 0.92, and F1 score of 0.88 through ablation studies. Additionally, we employed SAHI for image preprocessing and integrated the whitefly detection algorithm on a Raspberry Pi, and developed a GUI-based visual interface. Our preliminary analysis revealed a higher density of whiteflies on cotton leaves in the afternoon and the middle-top, middle, and middle-down plant sections. Conclusion Utilizing the enhanced YOLO v8s deep learning model, we have achieved precise detection and counting of whiteflies, enabling its application on hardware devices like the Raspberry Pi. This approach is highly suitable for research requiring accurate quantification of cotton whiteflies, including phenotypic analyses. Future work will focus on deploying such equipment in large fields to manage whitefly infestations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xpd完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
suliang发布了新的文献求助10
1秒前
bkagyin应助药药切克闹采纳,获得20
1秒前
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
2秒前
Akashi完成签到,获得积分10
2秒前
失眠耳机应助clarence采纳,获得30
2秒前
无花果应助Xin采纳,获得10
2秒前
2秒前
3秒前
一原君完成签到,获得积分10
4秒前
蛋挞完成签到 ,获得积分10
4秒前
赵123发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
不配.应助炽岈采纳,获得10
6秒前
6秒前
WAKAKA发布了新的文献求助10
7秒前
木头人应助自信的满天采纳,获得30
8秒前
9秒前
9秒前
10秒前
10秒前
面条完成签到,获得积分10
10秒前
dzp完成签到,获得积分10
10秒前
10秒前
不低头发布了新的文献求助10
11秒前
11秒前
xcli完成签到,获得积分10
11秒前
12秒前
下文献发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102382
求助须知:如何正确求助?哪些是违规求助? 2753656
关于积分的说明 7624478
捐赠科研通 2406188
什么是DOI,文献DOI怎么找? 1276717
科研通“疑难数据库(出版商)”最低求助积分说明 616918
版权声明 599103