Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers

纳米载体 纳米医学 杠杆(统计) 药物输送 纳米技术 计算机科学 系统工程 材料科学 人工智能 工程类 纳米颗粒
作者
Xuejiao J. Gao,Krzesimir Ciura,Yuanjie Ma,Alicja Mikołajczyk,Karolina Jagiełło,Yuxin Wan,Yurou Gao,Jia‐Jia Zheng,Shengliang Zhong,Tomasz Puzyn,Xingfa Gao
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202407793
摘要

Abstract The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano‐bio interface. To enhance nanocarrier design, scientists employ both physics‐based and data‐driven models. Physics‐based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data‐driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
王红玉发布了新的文献求助10
3秒前
田田完成签到,获得积分10
4秒前
开朗从安应助虚心醉蝶采纳,获得10
4秒前
Jasper应助失眠的凡阳采纳,获得10
5秒前
Akim应助lyc采纳,获得10
5秒前
tkp完成签到,获得积分10
6秒前
7秒前
8秒前
siyuyu完成签到,获得积分10
8秒前
不配.应助linn采纳,获得10
9秒前
朴实映天完成签到,获得积分20
11秒前
赵聚星发布了新的文献求助100
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
快乐的慕灵完成签到 ,获得积分10
14秒前
lixiao应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
lixiao应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
zyfqpc应助郝宝真采纳,获得10
16秒前
Nowind完成签到,获得积分10
16秒前
123发布了新的文献求助30
18秒前
YQ发布了新的文献求助10
18秒前
亲爱的安德烈完成签到,获得积分10
18秒前
19秒前
Nowind发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
22秒前
25秒前
26秒前
28秒前
and发布了新的文献求助10
29秒前
田田发布了新的文献求助10
30秒前
31秒前
Hello应助丁浩采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079