Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers

纳米载体 纳米医学 杠杆(统计) 药物输送 纳米技术 计算机科学 系统工程 材料科学 人工智能 工程类 纳米颗粒
作者
Xuejiao J. Gao,Krzesimir Ciura,Yuanjie Ma,Alicja Mikołajczyk,Karolina Jagiełło,Yuxin Wan,Yurou Gao,Jia‐Jia Zheng,Shengliang Zhong,Tomasz Puzyn,Xingfa Gao
出处
期刊:Advanced Materials [Wiley]
被引量:5
标识
DOI:10.1002/adma.202407793
摘要

Abstract The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano‐bio interface. To enhance nanocarrier design, scientists employ both physics‐based and data‐driven models. Physics‐based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data‐driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangyong完成签到,获得积分10
刚刚
手工人完成签到,获得积分20
刚刚
1秒前
elysia完成签到,获得积分10
1秒前
润泽完成签到,获得积分10
1秒前
飘逸宛丝完成签到,获得积分10
1秒前
耶耶发布了新的文献求助10
1秒前
粗暴的坤完成签到 ,获得积分10
2秒前
迷路的小蚂蚁完成签到,获得积分10
2秒前
王科研完成签到,获得积分10
3秒前
zqw完成签到,获得积分10
3秒前
宋文娟完成签到,获得积分10
4秒前
科研通AI5应助Qian采纳,获得10
4秒前
zho发布了新的文献求助10
4秒前
4秒前
一路嘿嘿应助cis2014采纳,获得10
5秒前
tttt完成签到,获得积分20
5秒前
123完成签到,获得积分10
5秒前
6秒前
善学以致用应助浏阳河采纳,获得10
6秒前
Vera完成签到,获得积分10
6秒前
汤绮菱完成签到,获得积分10
7秒前
朴素青寒完成签到,获得积分10
7秒前
积极的黑猫完成签到 ,获得积分10
8秒前
8秒前
俭朴的发带完成签到,获得积分10
8秒前
Rosaline完成签到 ,获得积分10
8秒前
烟花应助小野采纳,获得10
9秒前
儒雅的绿兰完成签到 ,获得积分10
9秒前
3139813319完成签到,获得积分10
10秒前
赘婿应助Rebecca采纳,获得10
10秒前
10秒前
Rainstorm27发布了新的文献求助10
11秒前
zhang005on完成签到,获得积分10
11秒前
务实仙人掌完成签到,获得积分10
11秒前
刘稀完成签到,获得积分10
11秒前
11秒前
Qing完成签到,获得积分10
12秒前
烂漫的蜡烛完成签到 ,获得积分10
12秒前
tracer完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725665
求助须知:如何正确求助?哪些是违规求助? 3270537
关于积分的说明 9966775
捐赠科研通 2985784
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777855
科研通“疑难数据库(出版商)”最低求助积分说明 747268