虚拟现实
康复
感知
物理医学与康复
心理学
虚拟实境
计算机科学
人机交互
医学
神经科学
作者
Tony Donegan,María V. Sánchez-Vives
标识
DOI:10.1097/wco.0000000000001321
摘要
Purpose of review This review explores recent advances in using immersive virtual reality to improve bodily perception and motor control in rehabilitation across musculoskeletal and neurological conditions, examining how virtual reality's unique capabilities can address the challenges of traditional approaches. The potential in this area of the emerging metaverse and the integration of artificial intelligence in virtual reality are discussed. Recent findings In musculoskeletal rehabilitation, virtual reality shows promise in enhancing motivation, adherence, improving range of motion, and reducing kinesiophobia, particularly postsurgery. For neurological conditions like stroke and spinal cord injury, virtual reality's ability to manipulate bodily perceptions offers significant therapeutic potential, with reported improvements in upper limb function and gait performance. Balance and gait rehabilitation, especially in older adults, have also seen positive outcomes. The integration of virtual reality with brain-computer interfaces presents exciting possibilities for severe speech and motor impairments. Summary Current research is limited by small sample sizes, short intervention durations, and variability in virtual reality systems. Future studies should focus on larger, long-term trials to confirm findings and explore underlying mechanisms. As virtual reality technology advances, its integration into rehabilitation programs could revolutionize treatment approaches, personalizing treatments, facilitating home training, and potentially improving patient outcomes across a wide variety of conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI