Intelligent recognition and automatic localization of pipeline welds based on multi-vision system

管道(软件) 计算机科学 计算机视觉 人工智能 机器视觉 程序设计语言
作者
Haijun Li,Linghui Yang,Changyu Long,Yijia Cheng,Yiyuan Fan,Jigui Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016209-016209
标识
DOI:10.1088/1361-6501/ad866a
摘要

Abstract Currently, the leakage detection of spacecraft pipeline welds relies on manual point-by-point inspection using a detection gun, which is inefficient and inadequate for the automation needs of spacecraft production. However, the accurate recognition and precise localization of widely distributed and small pipeline welds are crucial for automated detection. Therefore, this paper proposes a multi-vision detection and localization system that integrates global and local information, considering both comprehensive global 3D search and high-precision local 3D measurement. The improved YOLOv8 model is employed for pipeline weld recognition, which improves the recognition rate of welds. Based on the deep learning recognized and segmented welds, this paper proposes stereo matching and segmentation extraction methods for 3D localization and pipeline orientation determination. Additionally, the system integrates a robot to perform automated point-by-point inspection of welds within the area without collisions. The experimental results demonstrate the effectiveness of the improved YOLOv8 and the proposed methods for 3D weld localization and pipeline orientation determination. The maximum deviation of the spatial distance of fine weld positioning is 0.20 mm, and the repeatability of the 3D coordinates is around 0.1 mm. The system can perform precise localization and detection, meeting the requirements for automatic weld recognition and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SQ_Liu完成签到,获得积分10
2秒前
高高的觅风完成签到,获得积分10
2秒前
壮观的远侵完成签到,获得积分10
3秒前
乐乐应助金金采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
陈啦啦完成签到,获得积分10
6秒前
门牙完成签到,获得积分10
8秒前
St发布了新的文献求助10
9秒前
dajiejie完成签到 ,获得积分10
9秒前
科目三应助fogsea采纳,获得10
9秒前
宪哥他哥发布了新的文献求助10
9秒前
Lucas应助陈琳采纳,获得10
10秒前
10秒前
酸酸乳完成签到 ,获得积分10
10秒前
北枳完成签到 ,获得积分0
12秒前
打打应助亮子纠缠采纳,获得10
13秒前
友好冷风完成签到,获得积分10
14秒前
好久不见发布了新的文献求助10
14秒前
完美世界应助酷炫觅松采纳,获得10
16秒前
wsd发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
无极微光应助小狒狒采纳,获得20
19秒前
19秒前
St完成签到,获得积分10
20秒前
aaa发布了新的文献求助10
20秒前
陈琳发布了新的文献求助10
21秒前
沚沐发布了新的文献求助10
21秒前
21秒前
pickme发布了新的文献求助10
21秒前
李健应助香菜味钠片采纳,获得10
22秒前
23秒前
R18686226306发布了新的文献求助10
23秒前
Hello应助王贤平采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
多多发布了新的文献求助10
26秒前
浮游应助march采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109