薄膜
X射线光电子能谱
拉曼光谱
材料科学
扫描电子显微镜
溅射沉积
薄脆饼
化学气相沉积
化学工程
纳米技术
溅射
分析化学(期刊)
化学
光学
复合材料
有机化学
工程类
物理
作者
Kevon Kadiwala,Luize Dipane,Eriks Dipans,Arturs Bundulis,Ma̅rtiņš Zubkins,Andrejs Ogurcovs,J. Gabrusenoks,Dmitry Bocharov,Edgars Butanovs,Boris Polyakov
出处
期刊:Crystals
[MDPI AG]
日期:2024-07-28
卷期号:14 (8): 690-690
标识
DOI:10.3390/cryst14080690
摘要
The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI