Artificial intelligence and innovation management: Charting the evolving landscape

生成语法 商业化 过程(计算) 比例(比率) 业务 营销 知识管理 人工智能 计算机科学 物理 量子力学 操作系统
作者
Deborah Roberts,Marina Candi
出处
期刊:Technovation [Elsevier]
卷期号:136: 103081-103081 被引量:4
标识
DOI:10.1016/j.technovation.2024.103081
摘要

The excitement surrounding Artificial Intelligence (AI) is palpable. It is rapidly gaining prevalence in academia, business, and personal use. In particular, the emergence of generative AI, exemplified by large language models such as ChatGPT, has been marked by substantial media attention, discourse, and hype. Like most, if not all, aspects of business, innovation processes have been impacted. However, little is known about the degree of impact or the benefits that might be gained. To cut through the hype and understand the use of AI in innovation processes in businesses today, a large-scale survey amongst innovation managers in the USA was conducted, followed by interviews. The findings indicate that the use of AI in innovation processes is high and widespread, with AI being used for more than half of the surveyed firms' innovation projects. Furthermore, AI is used more in the development stage of the innovation process than in the idea or commercialization stages, which counters much of the existing discourse, which focuses on the idea stage. We uncover interesting differences by comparing the use and impact of generative AI with that of more traditional AI. Among these is a significant difference in expected benefits in making employees' jobs more fulfilling — managers believe generative AI is more likely to confer this benefit than traditional AI. This paper offers two valuable contributions. First, it enriches the evolving dialogue at the intersection of AI and innovation management by offering much-needed empirical evidence about practical applications. Second, it provides timely managerial implications by examining relationships between the use of AI and innovation performance and understanding the benefits that AI can confer in the innovation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
InfoNinja应助退而求其次采纳,获得30
2秒前
吾皇完成签到 ,获得积分10
3秒前
5秒前
LING完成签到,获得积分10
5秒前
Echizen完成签到,获得积分10
6秒前
大家的好朋友完成签到,获得积分10
8秒前
for_abSCI完成签到,获得积分10
9秒前
大力沛萍完成签到,获得积分10
10秒前
yuyan发布了新的文献求助10
12秒前
PSL完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
医只兔完成签到,获得积分10
16秒前
小蘑菇应助小陈采纳,获得30
16秒前
17秒前
17秒前
ding应助子勿语采纳,获得10
17秒前
okayyup完成签到,获得积分10
19秒前
wow发布了新的文献求助20
20秒前
21秒前
黄雪峰发布了新的文献求助10
22秒前
研友_VZG7GZ应助STOOd采纳,获得10
22秒前
Linnnn发布了新的文献求助10
23秒前
yuyan完成签到,获得积分20
23秒前
24秒前
bluewinds发布了新的文献求助10
25秒前
隐形曼青应助美丽从雪采纳,获得10
28秒前
28秒前
28秒前
anderson1738发布了新的文献求助30
28秒前
sfffff完成签到,获得积分10
30秒前
30秒前
土豆淀粉完成签到 ,获得积分10
31秒前
英姑应助郦涔采纳,获得10
31秒前
小陈发布了新的文献求助10
32秒前
summer完成签到 ,获得积分10
32秒前
静好发布了新的文献求助10
32秒前
33秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210528
求助须知:如何正确求助?哪些是违规求助? 2859785
关于积分的说明 8121041
捐赠科研通 2525276
什么是DOI,文献DOI怎么找? 1359214
科研通“疑难数据库(出版商)”最低求助积分说明 642956
邀请新用户注册赠送积分活动 614756