亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The feature extraction method based on quadratic wavelet packet energy entropy and t-SNE for bearing fault diagnosis

方位(导航) 小波 特征提取 二次方程 网络数据包 熵(时间箭头) 模式识别(心理学) 萃取(化学) 小波包分解 人工智能 计算机科学 数学 算法 小波变换 物理 计算机安全 化学 几何学 热力学 色谱法
作者
Jiahao Cao,Xiaodong Zhang,Yin Runsheng,MA Zhi-chun
标识
DOI:10.1177/09544062241283331
摘要

Rolling bearings are widely used in machinery and equipment, how to extract the feature and identify the fault of rolling bearings have become essential issues for ensuring the safe operation of rotation machinery. The fault signals of rolling bearings present nonlinear and non-smooth characteristics which introduce certain challenges to extracting the fault signal. To completely extract the features of signal, this study proposes a novel feature extraction method based on quadratic wavelet packet energy entropy (QWPEE) and t-distributed stochastic neighbor embedding (t-SNE) for bearing fault identification. Firstly, the vibration signals are divided into various node signals by wavelet packet decomposition (WPD). Next, the wavelet packet energy entropy (WPEE) of each node signal in the last layer is extracted to form the initial QWPEE feature vector. After that, the original QWPEE feature data are fused by the t-SNE method to obtain the final feature data set. Finally, the support vector machine (SVM) is employed to identify the states of the bearing fault. The experiments of bearing fault are created to ascertain the performance of the proposed methodology. The experimental outcomes demonstrate that the proposed methodology is efficacious in accurately identifying states of rolling bearing fault.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wave8013完成签到 ,获得积分10
1秒前
3秒前
6秒前
丘比特应助神医magical采纳,获得10
12秒前
ceeray23发布了新的文献求助20
13秒前
烂漫的绿茶完成签到 ,获得积分10
20秒前
打打应助orion采纳,获得10
21秒前
46秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
loii应助科研通管家采纳,获得200
50秒前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
小铭同学完成签到,获得积分10
1分钟前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
1分钟前
orion发布了新的文献求助10
1分钟前
传奇3应助hhhhhh采纳,获得10
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
1分钟前
微卫星不稳定完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
oi完成签到 ,获得积分10
2分钟前
大个应助计划采纳,获得30
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
NINI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
神医magical发布了新的文献求助10
3分钟前
yishang发布了新的文献求助10
3分钟前
3分钟前
愉快的犀牛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628321
求助须知:如何正确求助?哪些是违规求助? 4716547
关于积分的说明 14964063
捐赠科研通 4786065
什么是DOI,文献DOI怎么找? 2555581
邀请新用户注册赠送积分活动 1516838
关于科研通互助平台的介绍 1477380