荧光团
接受者
催化作用
化学
组合化学
光化学
荧光
有机化学
物理
光学
凝聚态物理
标识
DOI:10.1038/s41598-022-20689-4
摘要
We developed a green radical synthesis method for polyfunctionalized dihydro-2-oxypyrroles based on the Michael-Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylates, and formaldehyde. To generate a renewable energy sources from visible light, a PCET (proton-coupled electron transfer) photocatalyst was used in an ethanol solution in an air environment and at room temperature. In this study, we aim to develop an inexpensive and easily accessible novel donor-acceptor (D-A) fluorophore. Besides its speed-saving features and ease of use, the carbazole-based photocatalyst (4CzIPN) also shows high yields, energy-efficient, and is environmentally friendly. In this way, it is possible to monitor changes in chemical and environmental variables over time. The variety of yields is pretty uniform (84-97%, average 92.3%), and the kind of response times be very speedy (15-25 min, average 17.6 min), and the element noted within the dialogue is that the system tolerates a variety of donating and withdrawing functional groups, at the same time as nevertheless giving very fast rate and tremendous yields. A study of polyfunctionalized dihydro-2-oxypyrroles was conducted to calculate the turnover number (TON) and turnover frequency (TOF). Gram-scale cyclization proves that it can be applied to industry in a practical manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI