Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwb发布了新的文献求助10
刚刚
英姑应助shuiyu采纳,获得10
1秒前
搜集达人应助搬砖打工人采纳,获得10
3秒前
epitome完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助Lee采纳,获得10
4秒前
zz完成签到,获得积分20
4秒前
laleko发布了新的文献求助10
5秒前
6秒前
6秒前
君自兰芳完成签到,获得积分10
7秒前
爆米花应助cherish采纳,获得10
7秒前
8秒前
8秒前
vkey完成签到,获得积分10
9秒前
cwb完成签到,获得积分10
10秒前
10秒前
zz发布了新的文献求助30
11秒前
在水一方应助黄哈哈采纳,获得10
12秒前
怡然凌柏完成签到 ,获得积分10
12秒前
小吴同学来啦完成签到,获得积分10
12秒前
vkey发布了新的文献求助10
13秒前
13秒前
123发布了新的文献求助10
14秒前
15秒前
15秒前
world完成签到,获得积分10
17秒前
风趣的泥猴桃完成签到,获得积分10
17秒前
17秒前
18秒前
grisco完成签到,获得积分10
18秒前
18秒前
搜集达人应助123采纳,获得10
19秒前
19秒前
EgoElysia发布了新的文献求助10
20秒前
20秒前
21秒前
科研小贩发布了新的文献求助10
22秒前
whatever应助Tao采纳,获得10
23秒前
grisco发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028