Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ye完成签到,获得积分10
2秒前
陆浩学化学完成签到,获得积分10
3秒前
Slemon完成签到,获得积分10
4秒前
6秒前
大个应助普鲁卡因采纳,获得10
9秒前
咖啡豆发布了新的文献求助10
10秒前
意志所向完成签到,获得积分10
10秒前
《子非鱼》完成签到,获得积分10
11秒前
缓慢的甜瓜完成签到,获得积分10
13秒前
Llllll完成签到,获得积分10
13秒前
orixero应助梦华老师采纳,获得10
14秒前
大橙子发布了新的文献求助10
15秒前
gaoyang123完成签到 ,获得积分10
15秒前
qwe1108完成签到 ,获得积分10
15秒前
16秒前
jane完成签到 ,获得积分10
19秒前
21秒前
瑾玉完成签到,获得积分10
21秒前
23秒前
Akim应助duckspy采纳,获得10
23秒前
那种完成签到,获得积分10
23秒前
liuyanq完成签到,获得积分20
23秒前
24秒前
普鲁卡因发布了新的文献求助10
25秒前
加油杨完成签到 ,获得积分10
26秒前
liuyanq发布了新的文献求助10
29秒前
随风完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
34秒前
米九完成签到,获得积分10
36秒前
zhao完成签到,获得积分10
39秒前
普鲁卡因发布了新的文献求助10
39秒前
zj完成签到,获得积分10
45秒前
蓝橙完成签到,获得积分10
46秒前
50秒前
GD88完成签到,获得积分10
51秒前
糟糕的梨愁完成签到,获得积分10
52秒前
莫西莫西完成签到 ,获得积分10
53秒前
小趴蔡完成签到 ,获得积分10
55秒前
唐唐发布了新的文献求助10
55秒前
飘逸剑身完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022