Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANG发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
刚刚
sunzhiyu233发布了新的文献求助10
1秒前
Raul完成签到 ,获得积分10
1秒前
1秒前
伯尔尼圆白菜完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
buuyoo完成签到,获得积分10
2秒前
科研通AI5应助魏煜佳采纳,获得10
2秒前
LLxiaolong完成签到,获得积分10
2秒前
3秒前
3秒前
巨噬细胞A完成签到,获得积分10
3秒前
3秒前
我要读博士完成签到 ,获得积分10
3秒前
xxq完成签到,获得积分20
3秒前
福气小姐完成签到 ,获得积分10
3秒前
搜集达人应助jjy采纳,获得10
4秒前
4秒前
郑总完成签到,获得积分10
4秒前
CipherSage应助马尼拉采纳,获得10
4秒前
SCI完成签到 ,获得积分10
5秒前
6秒前
healer发布了新的文献求助10
6秒前
123完成签到,获得积分20
7秒前
李健的小迷弟应助yili采纳,获得10
7秒前
L.完成签到,获得积分10
7秒前
木子发布了新的文献求助10
7秒前
威武诺言发布了新的文献求助10
7秒前
科研通AI5应助孙二二采纳,获得10
7秒前
7秒前
英姑应助rookie_b0采纳,获得10
8秒前
毛慢慢发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
kangkang完成签到,获得积分10
9秒前
丘比特应助东风第一枝采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759