Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整整完成签到 ,获得积分10
1秒前
3秒前
香辣脆皮坤完成签到,获得积分10
3秒前
赘婿应助blingcmeng采纳,获得10
3秒前
小油菜发布了新的文献求助20
3秒前
4秒前
李李发布了新的文献求助10
4秒前
YanXT发布了新的文献求助30
5秒前
基拉发布了新的文献求助10
6秒前
7秒前
OIC发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
10秒前
12秒前
小铭发布了新的文献求助10
14秒前
一路生花完成签到,获得积分10
14秒前
欢喜的元蝶完成签到,获得积分10
15秒前
16秒前
温暖的天与完成签到 ,获得积分10
17秒前
坚强的初夏完成签到,获得积分10
18秒前
Hello应助英语六级采纳,获得10
19秒前
YanXT完成签到,获得积分10
19秒前
完美世界应助ZHI采纳,获得10
20秒前
不语发布了新的文献求助10
21秒前
21秒前
22秒前
叮叮叮铛完成签到,获得积分10
23秒前
Jasper应助基拉采纳,获得10
26秒前
27秒前
Alan发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
28秒前
不语完成签到,获得积分10
29秒前
wlscj举报lq求助涉嫌违规
29秒前
changping应助木子雨采纳,获得10
30秒前
贾明灵发布了新的文献求助10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834