Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
刚刚
1秒前
不配.应助羟醛缩合采纳,获得20
1秒前
脑洞疼应助星中一点光采纳,获得10
2秒前
zlx发布了新的文献求助10
2秒前
顺顺尼完成签到,获得积分10
2秒前
3秒前
3秒前
852应助小卢同学采纳,获得10
3秒前
喜悦念柏完成签到,获得积分10
4秒前
Seeking完成签到,获得积分10
4秒前
515发布了新的文献求助20
4秒前
甜甜忆山完成签到 ,获得积分10
5秒前
6秒前
6秒前
博利康尼关注了科研通微信公众号
7秒前
杨白秋完成签到,获得积分10
7秒前
7秒前
rosalieshi应助沈惠映采纳,获得30
7秒前
hetao286发布了新的文献求助20
7秒前
散作满河星完成签到,获得积分10
7秒前
8秒前
8秒前
大模型应助汽水采纳,获得10
8秒前
Lis发布了新的文献求助10
8秒前
忧伤的井发布了新的文献求助10
8秒前
诚心外绣完成签到,获得积分10
8秒前
9秒前
隐形曼青应助Bill采纳,获得30
9秒前
liu完成签到,获得积分10
9秒前
赘婿应助懵懂的岂愈采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助王晓宇采纳,获得10
10秒前
11秒前
Sir_M发布了新的文献求助10
11秒前
12秒前
快乐冰蓝发布了新的文献求助10
13秒前
谢耳朵发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177852
求助须知:如何正确求助?哪些是违规求助? 2828840
关于积分的说明 7968661
捐赠科研通 2490059
什么是DOI,文献DOI怎么找? 1327390
科研通“疑难数据库(出版商)”最低求助积分说明 635231
版权声明 602888