Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics

计算机科学 自回归模型 人工神经网络 人工智能 自回归积分移动平均 时间序列 马尔可夫链 小波 机器学习 循环神经网络 计量经济学 数学
作者
Madhurima Panja,Tanujit Chakraborty,Uttam Kumar,Nan Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 185-212 被引量:8
标识
DOI:10.1016/j.neunet.2023.05.049
摘要

Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
CodeCraft应助charint采纳,获得10
刚刚
1秒前
从容芸完成签到,获得积分10
1秒前
糟糕的雨莲完成签到,获得积分20
1秒前
agrlook完成签到,获得积分10
1秒前
孔乙己完成签到,获得积分10
1秒前
dddd发布了新的文献求助10
1秒前
蛋堡发布了新的文献求助10
2秒前
ZRY完成签到,获得积分10
2秒前
2秒前
稳重醉香完成签到,获得积分10
2秒前
2秒前
是假的完成签到 ,获得积分10
3秒前
ARK完成签到,获得积分20
3秒前
4秒前
4秒前
小菜鸟加油加油完成签到,获得积分10
4秒前
王鹏斐完成签到,获得积分10
4秒前
5秒前
小陈完成签到 ,获得积分10
5秒前
yjwang61发布了新的文献求助10
6秒前
婧婧婧完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
leaguy发布了新的文献求助10
7秒前
7秒前
杨怡红发布了新的文献求助10
8秒前
郭素玲发布了新的文献求助30
9秒前
LGP完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
终梦应助俊逸成危采纳,获得10
10秒前
Akim应助wgl200212采纳,获得10
10秒前
ding应助蛋堡采纳,获得10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135