Detecting common coccinellids found in sorghum using deep learning models

计算机科学 高粱 人工智能 机器学习 生物 生态学
作者
Chaoxin Wang,Ivan Grijalva,Doina Caragea,Brian McCornack
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-36738-5
摘要

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助桉豆采纳,获得10
刚刚
1秒前
1秒前
轻松的尔槐完成签到,获得积分20
1秒前
1秒前
搜集达人应助Ceng采纳,获得10
1秒前
Owen应助欢喜大地采纳,获得10
2秒前
3秒前
刘珊珊633发布了新的文献求助10
3秒前
CipherSage应助suji采纳,获得30
3秒前
zhao发布了新的文献求助20
4秒前
4秒前
4秒前
李爱国应助轻松的尔槐采纳,获得10
5秒前
明明发布了新的文献求助10
5秒前
5秒前
5秒前
ldd发布了新的文献求助10
5秒前
Soda完成签到,获得积分10
6秒前
6秒前
传奇3应助任性的小C采纳,获得10
6秒前
6秒前
6秒前
6秒前
NexusExplorer应助帅玉玉采纳,获得10
7秒前
7秒前
7秒前
哈哈完成签到 ,获得积分10
7秒前
积极南珍发布了新的文献求助10
8秒前
NexusExplorer应助djbj2022采纳,获得10
9秒前
future发布了新的文献求助10
9秒前
lzy发布了新的文献求助10
9秒前
perfumei完成签到,获得积分10
9秒前
9秒前
9秒前
滕侑林发布了新的文献求助10
9秒前
松山小吏完成签到,获得积分10
10秒前
only发布了新的文献求助10
10秒前
CodeCraft应助liminghui采纳,获得10
10秒前
聪明无施完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961