Detecting common coccinellids found in sorghum using deep learning models

计算机科学 高粱 人工智能 机器学习 生物 生态学
作者
Chaoxin Wang,Ivan Grijalva,Doina Caragea,Brian McCornack
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-36738-5
摘要

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baa完成签到,获得积分10
1秒前
忽远忽近的她完成签到 ,获得积分10
2秒前
朱杰完成签到 ,获得积分10
2秒前
heihei完成签到,获得积分10
4秒前
调皮平蓝完成签到,获得积分10
4秒前
猪鼓励完成签到,获得积分10
7秒前
零食宝完成签到 ,获得积分10
7秒前
kuyi完成签到 ,获得积分10
7秒前
粉色娇嫩完成签到 ,获得积分10
8秒前
9秒前
GG爆完成签到,获得积分10
10秒前
坚强的磬完成签到,获得积分10
14秒前
klio完成签到 ,获得积分10
15秒前
mrconli完成签到,获得积分10
16秒前
EDTA完成签到,获得积分10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
落寞的幻竹完成签到,获得积分10
17秒前
莫歌完成签到 ,获得积分10
17秒前
ldr888完成签到,获得积分10
18秒前
泽锦臻完成签到 ,获得积分10
20秒前
Hello应助chenjie采纳,获得10
22秒前
huco完成签到,获得积分10
22秒前
25秒前
maguodrgon完成签到,获得积分10
27秒前
Lotus完成签到,获得积分10
30秒前
矢思然发布了新的文献求助10
32秒前
Yanzhi完成签到,获得积分10
33秒前
deniroming完成签到,获得积分10
34秒前
楚寅完成签到 ,获得积分10
35秒前
ioio完成签到 ,获得积分10
36秒前
无限晓蓝完成签到 ,获得积分10
36秒前
积极的尔白完成签到 ,获得积分10
37秒前
杨洋完成签到 ,获得积分10
39秒前
仕子佳人完成签到,获得积分10
39秒前
40秒前
科研通AI6应助dearwang采纳,获得10
44秒前
舒适涵山完成签到,获得积分10
44秒前
小唐尼发布了新的文献求助30
45秒前
沉静凡松完成签到 ,获得积分20
51秒前
小唐尼完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115