Detecting common coccinellids found in sorghum using deep learning models

计算机科学 高粱 人工智能 机器学习 生物 生态学
作者
Chaoxin Wang,Ivan Grijalva,Doina Caragea,Brian McCornack
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-36738-5
摘要

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wjx发布了新的文献求助10
刚刚
bao发布了新的文献求助30
1秒前
Plemon完成签到,获得积分10
1秒前
1秒前
哈ha完成签到,获得积分10
1秒前
1秒前
hbydyy发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
汉堡包应助我其实还好采纳,获得30
3秒前
3秒前
所所应助laura采纳,获得10
3秒前
田様应助大气建辉采纳,获得10
3秒前
哲000发布了新的文献求助10
4秒前
胡萝北丁完成签到,获得积分10
4秒前
4秒前
5秒前
情怀应助辛普森采纳,获得10
5秒前
chen发布了新的文献求助50
5秒前
why发布了新的文献求助10
6秒前
探索完成签到,获得积分10
6秒前
王金金发布了新的文献求助10
6秒前
芝芝霉霉发布了新的文献求助10
6秒前
6秒前
流耶完成签到,获得积分10
7秒前
8秒前
WX发布了新的文献求助10
8秒前
耶耶完成签到,获得积分10
9秒前
9秒前
所所应助Yin采纳,获得10
9秒前
王九八发布了新的文献求助10
9秒前
酸奶七发布了新的文献求助10
9秒前
Echo发布了新的文献求助10
9秒前
9秒前
orixero应助王金金采纳,获得10
9秒前
10秒前
10秒前
quxian完成签到,获得积分10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663