已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting common coccinellids found in sorghum using deep learning models

计算机科学 高粱 人工智能 机器学习 生物 生态学
作者
Chaoxin Wang,Ivan Grijalva,Doina Caragea,Brian McCornack
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-36738-5
摘要

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
2秒前
2秒前
赘婿应助李锐采纳,获得10
3秒前
牛爱花发布了新的文献求助10
6秒前
xx发布了新的文献求助50
7秒前
南北完成签到 ,获得积分10
7秒前
甜甜圈完成签到 ,获得积分10
10秒前
13秒前
15秒前
15秒前
wang完成签到 ,获得积分10
17秒前
科研通AI2S应助元谷雪采纳,获得10
19秒前
口合发布了新的文献求助10
20秒前
abc105发布了新的文献求助10
21秒前
21秒前
王一一发布了新的文献求助10
22秒前
汉堡包应助牛爱花采纳,获得10
22秒前
Litm完成签到 ,获得积分10
24秒前
BowieHuang应助super chan采纳,获得10
24秒前
Scout完成签到,获得积分10
27秒前
石幻枫发布了新的文献求助10
27秒前
27秒前
Sake完成签到,获得积分20
28秒前
BowieHuang应助口合采纳,获得10
28秒前
dglyl发布了新的文献求助30
30秒前
La完成签到 ,获得积分10
32秒前
32秒前
聪慧的乐驹完成签到,获得积分10
32秒前
小蘑菇应助王一一采纳,获得10
33秒前
37秒前
苗条的嫣完成签到,获得积分10
40秒前
开放从云完成签到 ,获得积分10
41秒前
44秒前
45秒前
英俊的铭应助萧子采纳,获得10
46秒前
bgt完成签到 ,获得积分10
47秒前
47秒前
犬来八荒发布了新的文献求助10
50秒前
丘比特应助彭凯采纳,获得10
50秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558171
求助须知:如何正确求助?哪些是违规求助? 4643177
关于积分的说明 14670639
捐赠科研通 4584605
什么是DOI,文献DOI怎么找? 2514971
邀请新用户注册赠送积分活动 1489087
关于科研通互助平台的介绍 1459733