Detecting common coccinellids found in sorghum using deep learning models

计算机科学 高粱 人工智能 机器学习 生物 生态学
作者
Chaoxin Wang,Ivan Grijalva,Doina Caragea,Brian McCornack
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:7
标识
DOI:10.1038/s41598-023-36738-5
摘要

Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an important economic pest causing significant yield loss across the sorghum production region in the United States. Adequate management of SCA depends on costly field scouting to determine pest presence and economic threshold levels to spray insecticides. However, with the impact of insecticides on natural enemies, there is an urgent need to develop automated-detection technologies for their conservation. Natural enemies play a crucial role in the management of SCA populations. These insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. Although these insects help regulate SCA populations, the detection and classification of these insects is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced deep learning software provides a means to perform laborious automatic agricultural tasks, including detection and classification of insects. However, deep learning models for coccinellids in sorghum have not been developed. Therefore, our objective was to develop and train machine learning models to detect coccinellids commonly found in sorghum and classify them according to their genera, species, and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used to publish citizen's observations of images pertaining to living organisms. Experimental evaluation using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, and AP as high as 74.6. Our research contributes automated deep learning software to the area of integrated pest management, making it easier to detect natural enemies in sorghum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
丰富山柏完成签到,获得积分20
2秒前
Hello应助yz123采纳,获得10
3秒前
共享精神应助白若可依采纳,获得10
3秒前
研雪完成签到,获得积分10
3秒前
関电脑完成签到,获得积分10
3秒前
3秒前
Lucas应助mode采纳,获得10
3秒前
鲸鱼发布了新的文献求助10
4秒前
彭于晏应助mika采纳,获得10
4秒前
dxp发布了新的文献求助10
4秒前
Soul发布了新的文献求助10
4秒前
开元完成签到,获得积分10
4秒前
负责石头发布了新的文献求助10
5秒前
李爱国应助反方向的钟采纳,获得30
5秒前
5秒前
5秒前
从容襄发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
qwepirt发布了新的文献求助10
6秒前
狗宅发布了新的文献求助10
7秒前
花花发布了新的文献求助10
7秒前
好困发布了新的文献求助10
7秒前
7秒前
彩色夜阑完成签到,获得积分10
7秒前
7秒前
7秒前
追梦人完成签到,获得积分10
7秒前
8秒前
大个应助wlm采纳,获得10
8秒前
F_echo完成签到 ,获得积分10
8秒前
荣九山完成签到,获得积分10
8秒前
10秒前
10秒前
盛景洲发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646