Hybrid LSTM+CNN architecture for unsteady flow prediction

计算流体力学 Lift(数据挖掘) 卷积神经网络 人工神经网络 计算机科学 雷诺平均Navier-Stokes方程 旋涡脱落 深度学习 圆柱 涡流 人工智能 航程(航空) 流量(数学) 湍流 机械 机器学习 航空航天工程 雷诺数 物理 数学 几何学 工程类
作者
Koldo Portal-Porras,Unai Fernández‐Gámiz,Ekaitz Zulueta,Oscar Irigaray,R. Garcia-Fernandez
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 106281-106281 被引量:4
标识
DOI:10.1016/j.mtcomm.2023.106281
摘要

Data-driven methods are increasingly used for modeling fluid dynamic systems, since traditional numerical methods, such as Computational Fluid Dynamics (CFD), have certain limitations, including the required computational resources and user influence. There are many Deep Learning based methods capable of providing very accurate results for stationary problems. However, the prediction of unsteady flows remains being a challenge, since with the addition of the time component, these methods lose reliability. This paper aims to design a hybrid neural network for unsteady flow prediction, which combines a Long-Short Term Memory (LSTM) and a Convolutional Neural Network (CNN). Unsteady-state RANS-based CFD simulations are conducted to obtain data of flows around cylinders. In these simulations different inlet velocities and cylinder diameters are considered, to ensure diversity in the dataset. A hybrid neural network is designed, in which a LSTM predicts the Lift Coefficient for each time step and then, based on those predictions, a CNN predicts the velocity and pressure fields. For training and testing the proposed net the conducted CFD simulations are used. Even if there is a small mismatch between the ground-truth vortex shedding frequency and the predicted one, the proposed network is able to accurately predict the vortex shedding behind the cylinders, with very low errors throughout the whole studied range.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇洒的冰烟完成签到,获得积分10
刚刚
刚刚
科研通AI6应助Xu采纳,获得10
刚刚
刚刚
慕青应助rui采纳,获得10
1秒前
虎皮狗椒发布了新的文献求助10
1秒前
万能图书馆应助gao采纳,获得10
2秒前
2秒前
romeo发布了新的文献求助30
3秒前
janice发布了新的文献求助10
3秒前
严珍珍完成签到 ,获得积分10
3秒前
薄荷味完成签到,获得积分10
4秒前
脑洞疼应助伊洛采纳,获得10
4秒前
5秒前
无极微光应助维嘉采纳,获得20
5秒前
sunshine发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
田様应助abb先生采纳,获得10
6秒前
积木123完成签到,获得积分10
6秒前
BowieHuang应助VDC采纳,获得10
7秒前
科研通AI6应助高玉峰采纳,获得10
10秒前
romeo发布了新的文献求助10
10秒前
爆米花应助缥缈的涵菡采纳,获得10
10秒前
周周完成签到,获得积分10
11秒前
爆米花应助jzy采纳,获得10
11秒前
李健的小迷弟应助sunshine采纳,获得10
12秒前
13秒前
romeo发布了新的文献求助10
14秒前
yxsxm完成签到,获得积分10
15秒前
迪歪歪应助阳光热狗采纳,获得20
15秒前
15秒前
16秒前
16秒前
16秒前
归尘发布了新的文献求助10
16秒前
stuffmatter应助茜茜采纳,获得50
16秒前
慕青应助过时的孤晴采纳,获得10
16秒前
安安安关注了科研通微信公众号
17秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774