Hybrid LSTM+CNN architecture for unsteady flow prediction

计算流体力学 Lift(数据挖掘) 卷积神经网络 人工神经网络 计算机科学 雷诺平均Navier-Stokes方程 旋涡脱落 深度学习 圆柱 涡流 人工智能 航程(航空) 流量(数学) 湍流 机械 机器学习 航空航天工程 雷诺数 物理 数学 几何学 工程类
作者
Koldo Portal-Porras,Unai Fernández‐Gámiz,Ekaitz Zulueta,Oscar Irigaray,R. Garcia-Fernandez
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 106281-106281 被引量:4
标识
DOI:10.1016/j.mtcomm.2023.106281
摘要

Data-driven methods are increasingly used for modeling fluid dynamic systems, since traditional numerical methods, such as Computational Fluid Dynamics (CFD), have certain limitations, including the required computational resources and user influence. There are many Deep Learning based methods capable of providing very accurate results for stationary problems. However, the prediction of unsteady flows remains being a challenge, since with the addition of the time component, these methods lose reliability. This paper aims to design a hybrid neural network for unsteady flow prediction, which combines a Long-Short Term Memory (LSTM) and a Convolutional Neural Network (CNN). Unsteady-state RANS-based CFD simulations are conducted to obtain data of flows around cylinders. In these simulations different inlet velocities and cylinder diameters are considered, to ensure diversity in the dataset. A hybrid neural network is designed, in which a LSTM predicts the Lift Coefficient for each time step and then, based on those predictions, a CNN predicts the velocity and pressure fields. For training and testing the proposed net the conducted CFD simulations are used. Even if there is a small mismatch between the ground-truth vortex shedding frequency and the predicted one, the proposed network is able to accurately predict the vortex shedding behind the cylinders, with very low errors throughout the whole studied range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小甲鱼发布了新的文献求助10
刚刚
刚刚
1秒前
所所应助许昊龙采纳,获得10
2秒前
2秒前
大模型应助sxy采纳,获得10
3秒前
3秒前
4秒前
4秒前
zhaxiao发布了新的文献求助10
4秒前
4秒前
xu完成签到 ,获得积分10
4秒前
5秒前
Hexagram发布了新的文献求助10
5秒前
哭泣海雪完成签到 ,获得积分10
5秒前
8秒前
孤独的一鸣应助sean采纳,获得10
8秒前
慕青应助pharmstudent采纳,获得30
9秒前
hu完成签到 ,获得积分10
9秒前
yosh发布了新的文献求助10
10秒前
鸭鸭发布了新的文献求助10
10秒前
wzy给wzy的求助进行了留言
13秒前
15秒前
Carlos发布了新的文献求助10
16秒前
善学以致用应助熊22采纳,获得10
17秒前
18秒前
李健应助Vizz采纳,获得10
18秒前
大个应助读文献的刘楠采纳,获得10
20秒前
科研通AI5应助JasperChan采纳,获得10
20秒前
脑洞疼应助一如果一采纳,获得10
20秒前
研友_rLmNXn发布了新的文献求助10
20秒前
英俊的铭应助土豆大魔王采纳,获得10
22秒前
啦啦啦完成签到,获得积分10
22秒前
taoliu发布了新的文献求助10
23秒前
CipherSage应助研友_rLmNXn采纳,获得10
23秒前
23秒前
24秒前
YamDaamCaa应助charles采纳,获得30
24秒前
25秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226