Hybrid LSTM+CNN architecture for unsteady flow prediction

计算流体力学 Lift(数据挖掘) 卷积神经网络 人工神经网络 计算机科学 雷诺平均Navier-Stokes方程 旋涡脱落 深度学习 圆柱 涡流 人工智能 航程(航空) 流量(数学) 湍流 机械 机器学习 航空航天工程 雷诺数 物理 数学 几何学 工程类
作者
Koldo Portal-Porras,Unai Fernández‐Gámiz,Ekaitz Zulueta,Oscar Irigaray,R. Garcia-Fernandez
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 106281-106281 被引量:4
标识
DOI:10.1016/j.mtcomm.2023.106281
摘要

Data-driven methods are increasingly used for modeling fluid dynamic systems, since traditional numerical methods, such as Computational Fluid Dynamics (CFD), have certain limitations, including the required computational resources and user influence. There are many Deep Learning based methods capable of providing very accurate results for stationary problems. However, the prediction of unsteady flows remains being a challenge, since with the addition of the time component, these methods lose reliability. This paper aims to design a hybrid neural network for unsteady flow prediction, which combines a Long-Short Term Memory (LSTM) and a Convolutional Neural Network (CNN). Unsteady-state RANS-based CFD simulations are conducted to obtain data of flows around cylinders. In these simulations different inlet velocities and cylinder diameters are considered, to ensure diversity in the dataset. A hybrid neural network is designed, in which a LSTM predicts the Lift Coefficient for each time step and then, based on those predictions, a CNN predicts the velocity and pressure fields. For training and testing the proposed net the conducted CFD simulations are used. Even if there is a small mismatch between the ground-truth vortex shedding frequency and the predicted one, the proposed network is able to accurately predict the vortex shedding behind the cylinders, with very low errors throughout the whole studied range.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
刚刚
英俊的铭应助牛溪媛采纳,获得10
1秒前
1秒前
小蘑菇应助cruise采纳,获得10
1秒前
liu完成签到,获得积分10
1秒前
3秒前
3秒前
赘婿应助勒恩梁采纳,获得10
4秒前
坦率的语芙完成签到,获得积分10
4秒前
脑洞疼应助longer采纳,获得10
4秒前
caizhizhao完成签到,获得积分20
5秒前
cach完成签到,获得积分0
5秒前
5秒前
ssskong完成签到,获得积分10
6秒前
Xu完成签到,获得积分10
7秒前
明天发布了新的文献求助20
7秒前
CipherSage应助xvan采纳,获得10
7秒前
8秒前
fksci发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
阿庆完成签到,获得积分10
10秒前
Criminology34应助落后成仁采纳,获得10
10秒前
LMY完成签到,获得积分10
10秒前
12秒前
orixero应助wwwweer采纳,获得10
12秒前
13秒前
14秒前
诺贝尔候选人完成签到 ,获得积分10
14秒前
Youlu发布了新的文献求助10
15秒前
吃瓜完成签到,获得积分10
15秒前
15秒前
Mmmm发布了新的文献求助10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
tiptip应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172