Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms

算法 机器学习 人工智能 支持向量机 胸腔积液 医学诊断 腺苷脱氨酶 诊断准确性 计算机科学 医学 数据挖掘 放射科 内科学 腺苷
作者
Yanqing Liu,Zhigang Liang,Jing Yang,Songbo Yuan,Shanshan Wang,Weina Huang,Aihua Wu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:182: 105320-105320 被引量:7
标识
DOI:10.1016/j.ijmedinf.2023.105320
摘要

Early diagnosis and differential diagnosis of tuberculous pleural effusion (TPE) remains challenging and is critical to the patients' prognosis. The present study aimed to develop nine machine learning (ML) algorithms for early diagnosis of TPE and compare their performance. A total of 1435 untreated patients with pleural effusions (PEs) were retrospectively included and divided into the training set (80%) and the test set (20%). The demographic and laboratory variables were collected, preprocessed, and analyzed to select features, which were fed into nine ML algorithms to develop an optimal diagnostic model for TPE. The proposed model was validated by an independently external data. The decision curve analysis (DCA) and the SHapley Additive exPlanations (SHAP) were also applied. Support vector machine (SVM) was the best model in discriminating TPE from non-TPE, with a balanced accuracy of 87.7%, precision of 85.3%, area under the curve (AUC) of 0.914, sensitivity of 94.7%, specificity of 80.7%, and F1-score of 86.0% among the nine ML algorithms. The excellent diagnostic performance was also validated by the external data (a balanced accuracy of 87.7%, precision of 85.2%, and AUC of 0.898). Neural network (NN) and K-nearest neighbor (KNN) had better net benefits in clinical usefulness. Besides, PE adenosine deaminase (ADA), PE carcinoembryonic antigen (CEA), and serum CYFRA21-1 were identified as the top three important features for diagnosing TPE. This study developed and validated a SVM model for the early diagnosis of TPE, which might help clinicians provide better diagnosis and treatment for TPE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangran_778完成签到,获得积分10
刚刚
任性冷卉关注了科研通微信公众号
1秒前
2秒前
Akim应助林妹妹采纳,获得10
2秒前
赘婿应助xiaobai采纳,获得10
2秒前
Zzqlll发布了新的文献求助30
2秒前
坚定的雁完成签到 ,获得积分10
2秒前
滚动条完成签到,获得积分10
2秒前
葉要加油完成签到 ,获得积分10
3秒前
3秒前
karma完成签到,获得积分10
3秒前
5秒前
笑点解析举报zoerist求助涉嫌违规
5秒前
5秒前
5秒前
浮游应助DamenS采纳,获得10
6秒前
浮游应助DamenS采纳,获得10
6秒前
华仔应助DamenS采纳,获得10
6秒前
可爱的函函应助DamenS采纳,获得10
6秒前
李健的小迷弟应助DamenS采纳,获得10
6秒前
Hello应助DamenS采纳,获得10
6秒前
NexusExplorer应助DamenS采纳,获得10
6秒前
6秒前
大模型应助Paprika采纳,获得10
7秒前
7秒前
7秒前
7秒前
maomao发布了新的文献求助10
8秒前
善学以致用应助AaronDP采纳,获得10
8秒前
Cilvord发布了新的文献求助10
9秒前
不想打工完成签到,获得积分10
9秒前
ngg发布了新的文献求助30
9秒前
lololing关注了科研通微信公众号
9秒前
10秒前
跳跳鱼完成签到,获得积分10
10秒前
所所应助青木聪聪采纳,获得10
10秒前
十戈橙发布了新的文献求助30
10秒前
11秒前
1234556完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905490
求助须知:如何正确求助?哪些是违规求助? 4183360
关于积分的说明 12990057
捐赠科研通 3949603
什么是DOI,文献DOI怎么找? 2166023
邀请新用户注册赠送积分活动 1184504
关于科研通互助平台的介绍 1090823