Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms

算法 机器学习 人工智能 支持向量机 胸腔积液 医学诊断 腺苷脱氨酶 诊断准确性 计算机科学 医学 数据挖掘 放射科 内科学 腺苷
作者
Yanqing Liu,Zhigang Liang,Jing Yang,Songbo Yuan,Shanshan Wang,Weina Huang,Aihua Wu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:182: 105320-105320
标识
DOI:10.1016/j.ijmedinf.2023.105320
摘要

Early diagnosis and differential diagnosis of tuberculous pleural effusion (TPE) remains challenging and is critical to the patients' prognosis. The present study aimed to develop nine machine learning (ML) algorithms for early diagnosis of TPE and compare their performance. A total of 1435 untreated patients with pleural effusions (PEs) were retrospectively included and divided into the training set (80%) and the test set (20%). The demographic and laboratory variables were collected, preprocessed, and analyzed to select features, which were fed into nine ML algorithms to develop an optimal diagnostic model for TPE. The proposed model was validated by an independently external data. The decision curve analysis (DCA) and the SHapley Additive exPlanations (SHAP) were also applied. Support vector machine (SVM) was the best model in discriminating TPE from non-TPE, with a balanced accuracy of 87.7%, precision of 85.3%, area under the curve (AUC) of 0.914, sensitivity of 94.7%, specificity of 80.7%, and F1-score of 86.0% among the nine ML algorithms. The excellent diagnostic performance was also validated by the external data (a balanced accuracy of 87.7%, precision of 85.2%, and AUC of 0.898). Neural network (NN) and K-nearest neighbor (KNN) had better net benefits in clinical usefulness. Besides, PE adenosine deaminase (ADA), PE carcinoembryonic antigen (CEA), and serum CYFRA21-1 were identified as the top three important features for diagnosing TPE. This study developed and validated a SVM model for the early diagnosis of TPE, which might help clinicians provide better diagnosis and treatment for TPE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
矮小的茹妖完成签到 ,获得积分10
4秒前
Yes0419完成签到,获得积分10
7秒前
君看一叶舟完成签到 ,获得积分10
9秒前
bkagyin应助baixun采纳,获得30
17秒前
健忘的晓小完成签到 ,获得积分10
18秒前
22秒前
29秒前
独特的秋完成签到 ,获得积分10
31秒前
anthea完成签到 ,获得积分10
31秒前
31秒前
王乾龙发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
37秒前
echo完成签到 ,获得积分10
42秒前
灵巧的惜灵应助王乾龙采纳,获得10
49秒前
小水发布了新的文献求助30
50秒前
孙刚完成签到 ,获得积分10
51秒前
海边的曼彻斯特完成签到 ,获得积分10
51秒前
55秒前
可靠的南霜完成签到 ,获得积分10
56秒前
ShellyMaya完成签到 ,获得积分10
58秒前
MM完成签到 ,获得积分10
58秒前
59秒前
59秒前
Luna爱科研完成签到 ,获得积分10
1分钟前
爱笑桐完成签到 ,获得积分10
1分钟前
几几完成签到,获得积分10
1分钟前
lh完成签到 ,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
孙燕应助天涯小文刀采纳,获得10
1分钟前
NexusExplorer应助天涯小文刀采纳,获得10
1分钟前
科研通AI2S应助天涯小文刀采纳,获得10
1分钟前
搜集达人应助天涯小文刀采纳,获得10
1分钟前
田様应助天涯小文刀采纳,获得10
1分钟前
孙燕应助天涯小文刀采纳,获得10
1分钟前
崩溃完成签到,获得积分10
1分钟前
小水完成签到,获得积分10
1分钟前
1分钟前
大轩完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015