Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms

算法 机器学习 人工智能 支持向量机 胸腔积液 医学诊断 腺苷脱氨酶 诊断准确性 计算机科学 医学 数据挖掘 放射科 内科学 腺苷
作者
Yanqing Liu,Zhigang Liang,Jing Yang,Songbo Yuan,Shanshan Wang,Weina Huang,Aihua Wu
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:182: 105320-105320
标识
DOI:10.1016/j.ijmedinf.2023.105320
摘要

Early diagnosis and differential diagnosis of tuberculous pleural effusion (TPE) remains challenging and is critical to the patients' prognosis. The present study aimed to develop nine machine learning (ML) algorithms for early diagnosis of TPE and compare their performance. A total of 1435 untreated patients with pleural effusions (PEs) were retrospectively included and divided into the training set (80%) and the test set (20%). The demographic and laboratory variables were collected, preprocessed, and analyzed to select features, which were fed into nine ML algorithms to develop an optimal diagnostic model for TPE. The proposed model was validated by an independently external data. The decision curve analysis (DCA) and the SHapley Additive exPlanations (SHAP) were also applied. Support vector machine (SVM) was the best model in discriminating TPE from non-TPE, with a balanced accuracy of 87.7%, precision of 85.3%, area under the curve (AUC) of 0.914, sensitivity of 94.7%, specificity of 80.7%, and F1-score of 86.0% among the nine ML algorithms. The excellent diagnostic performance was also validated by the external data (a balanced accuracy of 87.7%, precision of 85.2%, and AUC of 0.898). Neural network (NN) and K-nearest neighbor (KNN) had better net benefits in clinical usefulness. Besides, PE adenosine deaminase (ADA), PE carcinoembryonic antigen (CEA), and serum CYFRA21-1 were identified as the top three important features for diagnosing TPE. This study developed and validated a SVM model for the early diagnosis of TPE, which might help clinicians provide better diagnosis and treatment for TPE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣青烟完成签到 ,获得积分10
5秒前
御风完成签到,获得积分10
10秒前
少年旭完成签到,获得积分10
11秒前
wo_qq111完成签到 ,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
哎嘿应助科研通管家采纳,获得10
13秒前
13秒前
哎嘿应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
哎嘿应助科研通管家采纳,获得10
13秒前
哎嘿应助科研通管家采纳,获得10
13秒前
隐形白开水完成签到,获得积分10
16秒前
17秒前
Monday完成签到,获得积分10
18秒前
20秒前
嗡嗡完成签到,获得积分10
20秒前
略略略完成签到 ,获得积分10
25秒前
靓丽初蓝完成签到,获得积分10
26秒前
NXZNXZ完成签到 ,获得积分10
26秒前
27秒前
陈M雯完成签到 ,获得积分10
28秒前
今天没有哭鸭完成签到,获得积分10
28秒前
道友等等我完成签到,获得积分0
31秒前
霸气雪珍完成签到,获得积分10
31秒前
科研达人发布了新的文献求助10
32秒前
32秒前
34秒前
深情安青应助搞怪的沛菡采纳,获得10
34秒前
强强完成签到,获得积分10
35秒前
Jiang完成签到,获得积分10
35秒前
drizzling完成签到,获得积分10
36秒前
annabel完成签到 ,获得积分10
37秒前
迅速的寻绿完成签到,获得积分10
38秒前
38秒前
MISSIW完成签到,获得积分10
38秒前
yongzaizhuigan完成签到,获得积分0
41秒前
陈里里完成签到 ,获得积分10
41秒前
42秒前
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155