Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms

算法 机器学习 人工智能 支持向量机 胸腔积液 医学诊断 腺苷脱氨酶 诊断准确性 计算机科学 医学 数据挖掘 放射科 内科学 腺苷
作者
Yanqing Liu,Zhigang Liang,Jing Yang,Songbo Yuan,Shanshan Wang,Weina Huang,Aihua Wu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:182: 105320-105320
标识
DOI:10.1016/j.ijmedinf.2023.105320
摘要

Early diagnosis and differential diagnosis of tuberculous pleural effusion (TPE) remains challenging and is critical to the patients' prognosis. The present study aimed to develop nine machine learning (ML) algorithms for early diagnosis of TPE and compare their performance. A total of 1435 untreated patients with pleural effusions (PEs) were retrospectively included and divided into the training set (80%) and the test set (20%). The demographic and laboratory variables were collected, preprocessed, and analyzed to select features, which were fed into nine ML algorithms to develop an optimal diagnostic model for TPE. The proposed model was validated by an independently external data. The decision curve analysis (DCA) and the SHapley Additive exPlanations (SHAP) were also applied. Support vector machine (SVM) was the best model in discriminating TPE from non-TPE, with a balanced accuracy of 87.7%, precision of 85.3%, area under the curve (AUC) of 0.914, sensitivity of 94.7%, specificity of 80.7%, and F1-score of 86.0% among the nine ML algorithms. The excellent diagnostic performance was also validated by the external data (a balanced accuracy of 87.7%, precision of 85.2%, and AUC of 0.898). Neural network (NN) and K-nearest neighbor (KNN) had better net benefits in clinical usefulness. Besides, PE adenosine deaminase (ADA), PE carcinoembryonic antigen (CEA), and serum CYFRA21-1 were identified as the top three important features for diagnosing TPE. This study developed and validated a SVM model for the early diagnosis of TPE, which might help clinicians provide better diagnosis and treatment for TPE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwx完成签到,获得积分10
刚刚
完美世界应助妩媚的舞仙采纳,获得10
刚刚
刚刚
斯文败类应助Ich采纳,获得10
1秒前
小冯发布了新的文献求助10
1秒前
LaFee完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
CipherSage应助BingHe采纳,获得10
2秒前
pearl发布了新的文献求助10
2秒前
只要平凡完成签到,获得积分10
3秒前
北过居庸完成签到,获得积分10
3秒前
4秒前
我是老大应助坚强百褶裙采纳,获得10
4秒前
4秒前
4秒前
5秒前
blablawindy发布了新的文献求助10
5秒前
5秒前
浮游应助mumumuzzz采纳,获得10
5秒前
张昭蓉完成签到,获得积分10
5秒前
6秒前
LeeWX完成签到,获得积分20
6秒前
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
奋斗的若云完成签到,获得积分10
9秒前
9秒前
anton完成签到,获得积分10
9秒前
单纯的又菱完成签到,获得积分10
9秒前
9秒前
小脑袋发布了新的文献求助10
9秒前
共享精神应助鲜艳的手链采纳,获得10
10秒前
Owen应助hhh采纳,获得10
10秒前
忽闻水完成签到,获得积分10
10秒前
元谷雪发布了新的文献求助30
10秒前
彳亍1117发布了新的文献求助10
10秒前
潇洒闭月发布了新的文献求助10
10秒前
11秒前
泥撑完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794