Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms

算法 机器学习 人工智能 支持向量机 胸腔积液 医学诊断 腺苷脱氨酶 诊断准确性 计算机科学 医学 数据挖掘 放射科 内科学 腺苷
作者
Yanqing Liu,Zhigang Liang,Jing Yang,Songbo Yuan,Shanshan Wang,Weina Huang,Aihua Wu
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:182: 105320-105320 被引量:7
标识
DOI:10.1016/j.ijmedinf.2023.105320
摘要

Early diagnosis and differential diagnosis of tuberculous pleural effusion (TPE) remains challenging and is critical to the patients' prognosis. The present study aimed to develop nine machine learning (ML) algorithms for early diagnosis of TPE and compare their performance. A total of 1435 untreated patients with pleural effusions (PEs) were retrospectively included and divided into the training set (80%) and the test set (20%). The demographic and laboratory variables were collected, preprocessed, and analyzed to select features, which were fed into nine ML algorithms to develop an optimal diagnostic model for TPE. The proposed model was validated by an independently external data. The decision curve analysis (DCA) and the SHapley Additive exPlanations (SHAP) were also applied. Support vector machine (SVM) was the best model in discriminating TPE from non-TPE, with a balanced accuracy of 87.7%, precision of 85.3%, area under the curve (AUC) of 0.914, sensitivity of 94.7%, specificity of 80.7%, and F1-score of 86.0% among the nine ML algorithms. The excellent diagnostic performance was also validated by the external data (a balanced accuracy of 87.7%, precision of 85.2%, and AUC of 0.898). Neural network (NN) and K-nearest neighbor (KNN) had better net benefits in clinical usefulness. Besides, PE adenosine deaminase (ADA), PE carcinoembryonic antigen (CEA), and serum CYFRA21-1 were identified as the top three important features for diagnosing TPE. This study developed and validated a SVM model for the early diagnosis of TPE, which might help clinicians provide better diagnosis and treatment for TPE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小仙完成签到,获得积分10
刚刚
1秒前
1秒前
xuxu发布了新的文献求助30
1秒前
MKY完成签到,获得积分10
2秒前
是且啊完成签到,获得积分10
2秒前
可靠月亮发布了新的文献求助10
2秒前
lx关闭了lx文献求助
2秒前
科目三应助yu采纳,获得10
2秒前
冷笑完成签到,获得积分10
3秒前
辛勤心情关注了科研通微信公众号
3秒前
3秒前
打打应助xanderxue采纳,获得10
3秒前
你一头牛牛牛牛完成签到,获得积分10
3秒前
无风发布了新的文献求助10
3秒前
4秒前
CHENG_2025完成签到,获得积分10
4秒前
Hello应助123采纳,获得10
5秒前
旺帮主完成签到,获得积分10
5秒前
CipherSage应助54123采纳,获得10
5秒前
有点鸭梨呀完成签到 ,获得积分10
5秒前
Winter完成签到 ,获得积分10
5秒前
今后应助坦率的火车采纳,获得10
6秒前
6秒前
童小肥发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
dalian发布了新的文献求助10
7秒前
7秒前
7秒前
WCM完成签到,获得积分10
7秒前
xzh086发布了新的文献求助30
8秒前
青寻完成签到,获得积分10
10秒前
刘小孩完成签到,获得积分10
10秒前
ncuwzq完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316787
求助须知:如何正确求助?哪些是违规求助? 4459242
关于积分的说明 13874397
捐赠科研通 4349242
什么是DOI,文献DOI怎么找? 2388650
邀请新用户注册赠送积分活动 1382839
关于科研通互助平台的介绍 1352214