PDRLRR: A novel low-rank representation with projection distance regularization via manifold optimization for clustering

低秩近似 降维 聚类分析 投影(关系代数) 矩阵范数 秩(图论) 数学 斯蒂弗尔流形 正规化(语言学) 人工智能 基质(化学分析) 算法 模式识别(心理学) 计算机科学 组合数学 特征向量 纯数学 物理 张量(固有定义) 复合材料 量子力学 材料科学
作者
Haoran Chen,Chen Xu,Hongwei Tao,Zuhe Li,Boyue Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110198-110198
标识
DOI:10.1016/j.patcog.2023.110198
摘要

The low-rank representation (LRR) method has attracted widespread attention due to its excellent performance in pattern recognition and machine learning. LRR-based variants have been proposed to solve the three existing problems in LRR: 1) the projection matrix is permanently fixed when dimensionality reduction techniques are adopted; 2) LRR fails to capture the local geometric structure; and 3) the solution deviates from the real low-rank solution. To address these problems, this paper proposes a low-rank representation with projection distance regularization (PDRLRR) via manifold optimization for clustering. In detail, we first introduce a low-dimensional projection matrix and a projection distance regularization term to fit the projected data automatically and capture the local structure of the data, respectively. Consequently, the projection matrix and representation matrix are obtained jointly. Then, we obtain a more accurate low-rank solution by minimizing the Schatten-p norm instead of the nuclear norm. Next, the projection matrix is optimized through a generalized Stiefel manifold. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉子完成签到,获得积分10
1秒前
HYLynn完成签到,获得积分10
1秒前
大辉完成签到 ,获得积分10
4秒前
所所应助英勇靖雁采纳,获得10
4秒前
5秒前
小鱼儿发布了新的文献求助10
5秒前
Felix0917完成签到,获得积分10
6秒前
6秒前
JiayanLi完成签到,获得积分20
6秒前
chenchao完成签到,获得积分10
7秒前
9秒前
所所应助汎影采纳,获得10
10秒前
UHPC发布了新的文献求助10
11秒前
11秒前
华仔应助寻光人采纳,获得10
12秒前
赘婿应助罗彩明采纳,获得10
12秒前
12秒前
12秒前
xiaofengyyy发布了新的文献求助10
13秒前
我是老大应助sunyuhao采纳,获得30
14秒前
15秒前
顾矜应助sunwei采纳,获得10
16秒前
SciGPT应助现实的安波采纳,获得10
17秒前
李123发布了新的文献求助10
17秒前
李健的小迷弟应助汎影采纳,获得10
18秒前
19秒前
orixero应助Applause采纳,获得10
19秒前
20秒前
小蘑菇应助太阳采纳,获得10
20秒前
20秒前
哑巴完成签到,获得积分10
20秒前
20秒前
浮游应助科研通管家采纳,获得10
21秒前
三无发布了新的文献求助10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得30
21秒前
Leanne应助科研通管家采纳,获得30
21秒前
无花果应助科研通管家采纳,获得10
21秒前
mmmmb应助科研通管家采纳,获得30
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340