BioDrone: A Bionic Drone-Based Single Object Tracking Benchmark for Robust Vision

无人机 人工智能 计算机视觉 水准点(测量) 计算机科学 跟踪(教育) 视频跟踪 对象(语法) 模式识别(心理学) 视觉对象识别的认知神经科学 地理 大地测量学 心理学 教育学 遗传学 生物
作者
Xin Zhao,Shiyu Hu,Yipei Wang,Jing Zhang,Yimin Hu,Rongshuai Liu,Haibin Ling,Yin Li,Rui Li,Kun Liu,Jiadong Li
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:132 (5): 1659-1684
标识
DOI:10.1007/s11263-023-01937-0
摘要

Single object tracking (SOT) is a fundamental problem in computer vision, with a wide range of applications, including autonomous driving, augmented reality, and robot navigation. The robustness of SOT faces two main challenges: tiny target and fast motion. These challenges are especially manifested in videos captured by unmanned aerial vehicles (UAV), where the target is usually far away from the camera and often with significant motion relative to the camera. To evaluate the robustness of SOT methods, we propose BioDrone -- the first bionic drone-based visual benchmark for SOT. Unlike existing UAV datasets, BioDrone features videos captured from a flapping-wing UAV system with a major camera shake due to its aerodynamics. BioDrone hence highlights the tracking of tiny targets with drastic changes between consecutive frames, providing a new robust vision benchmark for SOT. To date, BioDrone offers the largest UAV-based SOT benchmark with high-quality fine-grained manual annotations and automatically generates frame-level labels, designed for robust vision analyses. Leveraging our proposed BioDrone, we conduct a systematic evaluation of existing SOT methods, comparing the performance of 20 representative models and studying novel means of optimizing a SOTA method (KeepTrack KeepTrack) for robust SOT. Our evaluation leads to new baselines and insights for robust SOT. Moving forward, we hope that BioDrone will not only serve as a high-quality benchmark for robust SOT, but also invite future research into robust computer vision. The database, toolkits, evaluation server, and baseline results are available at http://biodrone.aitestunion.com.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊张应助念与惜采纳,获得10
5秒前
7秒前
迪奥哒应助onia采纳,获得10
7秒前
9秒前
taozhiqi发布了新的文献求助20
10秒前
李健应助饭团不吃鱼采纳,获得10
13秒前
Owen应助lolo采纳,获得10
14秒前
CCCCPUTA完成签到,获得积分10
15秒前
110o发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
小鸭子应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得50
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
orixero应助dd采纳,获得10
20秒前
852应助110o采纳,获得10
23秒前
ss完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
叶琳完成签到 ,获得积分20
24秒前
CodeCraft应助cocolu采纳,获得30
25秒前
ee发布了新的文献求助10
25秒前
26秒前
26秒前
yy完成签到 ,获得积分10
26秒前
代纤绮完成签到,获得积分10
27秒前
LI发布了新的文献求助10
27秒前
27秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134