🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Spatial Analysis-Enhanced Dermatological Image Classification for Paronychia

计算机科学 人工智能 分类器(UML) 分割 模式识别(心理学) 管道(软件) 图像分割 空间分析 人工神经网络 上下文图像分类 深度学习 机器学习 数据挖掘 图像(数学) 数学 统计 程序设计语言
作者
Kalwa Anvesh,Janapati Venkata Krishna,Akhbar Sha,S Abhishek,T Anjali,Nandakishor Prabhu Ramlal
出处
期刊:2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) 卷期号:: 777-782
标识
DOI:10.1109/iceca58529.2023.10395209
摘要

This research study proposed a novel methodology that enhances image classification accuracy by incorporating spatial analysis-driven confidence scores. The proposed pipeline is a synergy of image segmentation, spatial analysis, and state-of-the-art machine learning techniques, aiming to improve classification outcomes by leveraging finer contextual information. The Dermnet dataset, a comprehensive collection of dermatology images encompassing a diverse range of skin conditions, is utilized for evaluation. The proposed approach is evaluated across several prevalent neural network architectures to assess its applicability in real-world scenarios. The first step of the proposed pipeline employs the U-Net architecture for image segmentation, effectively identifying regions of interest within the images. These segmented regions form the foundation for subsequent spatial analysis. The spatial analysis stage capitalizes on the insights derived from the segmented regions, calculating density maps to capture object distribution patterns within the images. By integrating this spatial information, the proposed pipeline augments classifier confidence scores, enabling enhanced discrimination between different classes. To validate our methodology, we conduct extensive experiments using the Dermnet dataset. Notably, this study employs a selection of widely adopted neural network architectures, including ResNet34, VGG16, DenseNet121, InceptionV3,and EfficientNet. The results showcase substantial improvements in classification accuracy across the evaluated models, thereby affirming the effectiveness of the spatial analysis-driven confidence scores. Specifically, the accuracies obtained are as follows: ResNet34 (0.918), VGG16 (0.876), DenseNet121 (0.942), InceptionV3 (0.971), and EfficientNet (0.906).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助敏感的板栗采纳,获得10
1秒前
zxr发布了新的文献求助10
1秒前
Jasper应助zanedou采纳,获得10
1秒前
2秒前
华西招生版完成签到,获得积分10
4秒前
xt完成签到,获得积分10
4秒前
4秒前
Marita发布了新的文献求助10
5秒前
6秒前
华仔应助sweety采纳,获得10
7秒前
善学以致用应助迷人的Jack采纳,获得10
7秒前
7秒前
8秒前
韩维发布了新的文献求助10
8秒前
ottsannn发布了新的文献求助10
8秒前
Llllll发布了新的文献求助30
9秒前
11秒前
凉白开完成签到,获得积分10
12秒前
是帆帆呀发布了新的文献求助10
12秒前
adi完成签到,获得积分10
12秒前
orixero应助外向豁采纳,获得10
13秒前
冰河完成签到,获得积分10
13秒前
13秒前
代代代完成签到,获得积分10
14秒前
所所应助开放空间采纳,获得10
14秒前
Marita完成签到,获得积分10
15秒前
安安完成签到,获得积分10
16秒前
善良海云完成签到,获得积分10
16秒前
SYLH应助韩维采纳,获得10
17秒前
希望天下0贩的0应助ottsannn采纳,获得10
17秒前
CodeCraft应助是帆帆呀采纳,获得10
19秒前
19秒前
20秒前
传奇3应助chuanfu采纳,获得10
20秒前
20秒前
勤奋酒窝完成签到,获得积分10
22秒前
22秒前
zanedou发布了新的文献求助10
23秒前
樱桃发布了新的文献求助10
25秒前
ZZZ发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599295
求助须知:如何正确求助?哪些是违规求助? 3167908
关于积分的说明 9555641
捐赠科研通 2874435
什么是DOI,文献DOI怎么找? 1578067
邀请新用户注册赠送积分活动 741908
科研通“疑难数据库(出版商)”最低求助积分说明 724930