Cross-Domain Class Incremental Broad Network for Continuous Diagnosis of Rotating Machinery Faults Under Variable Operating Conditions

计算机科学 独立同分布随机变量 数据流挖掘 领域(数学分析) 人工智能 变量(数学) 机器学习 班级(哲学) 领域知识 领域(数学) 功能(生物学) 断层(地质) 数据挖掘 分布式计算 随机变量 数学 数学分析 统计 进化生物学 地震学 纯数学 生物 地质学
作者
Mingkuan Shi,Chuancang Ding,Shuyuan Chang,Changqing Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 6356-6368 被引量:6
标识
DOI:10.1109/tii.2023.3345449
摘要

Machine learning models have been widely successful in the field of intelligent fault diagnosis. Most of the existing machine learning models are deployed in static environments and rely on precollected datasets for offline training, which makes it impossible to update the models further once they are established. However, in the open and dynamic environment in reality, there is always incoming data in the form of streams, including new categories of data that are constantly generated over time. In addition, the operating conditions of mechanical equipment are time-varying, which results in continuous stream data that are nonindependently and homogeneously distributed. In industrial applications, the diagnosis problem of nonindependent and identically distributed continuous streaming data is referred to as the cross-domain class incremental diagnosis problem. To address the cross-domain class incremental problem, a novel cross-domain class incremental broad network (CDCIBN) is proposed. Specifically, to solve the nonindependent identically distributed problem, a novel domain-adaptation learning loss function is first designed, which enables the conventional broad network to handle the category increment task well. Then, a cross-domain class incremental learning mechanism is designed, which learns new categories while retaining the knowledge of old categories well enough without replaying old category data. The effectiveness of the proposed method is evaluated through multiple mechanical failure increment cases. Experimental analysis demonstrates that the designed CDCIBN has significant advantages in the variable working condition class incremental application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助556644O采纳,获得10
1秒前
hello完成签到,获得积分10
1秒前
鳗鱼怀蕊完成签到,获得积分10
1秒前
老实的石头完成签到,获得积分10
3秒前
Fa完成签到,获得积分10
4秒前
盛夏完成签到,获得积分10
8秒前
nam发布了新的文献求助10
9秒前
龙抬头完成签到,获得积分10
10秒前
ty完成签到,获得积分10
11秒前
wxnice发布了新的文献求助10
12秒前
12秒前
556644O完成签到,获得积分10
12秒前
威武冷雪完成签到,获得积分10
13秒前
foyefeng完成签到,获得积分10
14秒前
NorthWang完成签到,获得积分10
14秒前
cylee完成签到 ,获得积分10
16秒前
556644O发布了新的文献求助10
16秒前
玩命的无春完成签到 ,获得积分10
16秒前
18秒前
直率的灵安完成签到,获得积分10
19秒前
简单的丑完成签到 ,获得积分10
19秒前
CodeCraft应助Jim luo采纳,获得10
19秒前
19秒前
账户已注销应助liuguohua126采纳,获得30
20秒前
liyi2022完成签到,获得积分10
21秒前
杜兰特工队完成签到,获得积分10
22秒前
苦西迪发布了新的文献求助10
23秒前
科研铁人完成签到,获得积分10
23秒前
不吃芹菜完成签到,获得积分10
23秒前
白茶的雪完成签到,获得积分10
23秒前
支雨泽完成签到,获得积分10
23秒前
伊yan完成签到 ,获得积分10
24秒前
浅香千雪完成签到,获得积分10
25秒前
斯文败类应助飞快的绿采纳,获得10
25秒前
小菜鸡完成签到 ,获得积分10
25秒前
maxyer完成签到,获得积分10
26秒前
26秒前
Inicly完成签到 ,获得积分10
27秒前
黑包包大人完成签到,获得积分10
29秒前
jhcraul完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068355
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476332
捐赠科研通 2369299
什么是DOI,文献DOI怎么找? 1256310
科研通“疑难数据库(出版商)”最低求助积分说明 609538
版权声明 596835