Cross-Domain Class Incremental Broad Network for Continuous Diagnosis of Rotating Machinery Faults Under Variable Operating Conditions

计算机科学 独立同分布随机变量 数据流挖掘 领域(数学分析) 人工智能 变量(数学) 机器学习 班级(哲学) 领域知识 领域(数学) 功能(生物学) 断层(地质) 数据挖掘 分布式计算 随机变量 数学 数学分析 统计 进化生物学 地震学 纯数学 生物 地质学
作者
Mingkuan Shi,Chuancang Ding,Shuyuan Chang,Changqing Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 6356-6368 被引量:6
标识
DOI:10.1109/tii.2023.3345449
摘要

Machine learning models have been widely successful in the field of intelligent fault diagnosis. Most of the existing machine learning models are deployed in static environments and rely on precollected datasets for offline training, which makes it impossible to update the models further once they are established. However, in the open and dynamic environment in reality, there is always incoming data in the form of streams, including new categories of data that are constantly generated over time. In addition, the operating conditions of mechanical equipment are time-varying, which results in continuous stream data that are nonindependently and homogeneously distributed. In industrial applications, the diagnosis problem of nonindependent and identically distributed continuous streaming data is referred to as the cross-domain class incremental diagnosis problem. To address the cross-domain class incremental problem, a novel cross-domain class incremental broad network (CDCIBN) is proposed. Specifically, to solve the nonindependent identically distributed problem, a novel domain-adaptation learning loss function is first designed, which enables the conventional broad network to handle the category increment task well. Then, a cross-domain class incremental learning mechanism is designed, which learns new categories while retaining the knowledge of old categories well enough without replaying old category data. The effectiveness of the proposed method is evaluated through multiple mechanical failure increment cases. Experimental analysis demonstrates that the designed CDCIBN has significant advantages in the variable working condition class incremental application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
1秒前
zhouleiwang完成签到,获得积分10
2秒前
摘星012发布了新的文献求助20
2秒前
嘿嘿完成签到,获得积分10
5秒前
yr完成签到 ,获得积分10
6秒前
6秒前
王道远完成签到,获得积分10
6秒前
Jasper应助zhouleiwang采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
虎妞完成签到 ,获得积分10
7秒前
积极晓绿完成签到,获得积分10
7秒前
EaRnn发布了新的文献求助10
8秒前
现代的卿完成签到 ,获得积分10
8秒前
拉长的服饰完成签到,获得积分10
9秒前
香菜大王完成签到 ,获得积分10
9秒前
9秒前
愉快静曼发布了新的文献求助10
9秒前
奋斗人雄完成签到,获得积分10
11秒前
小v完成签到 ,获得积分10
11秒前
Gigi完成签到,获得积分10
12秒前
ssssssssci完成签到,获得积分10
12秒前
Owen应助大气灵枫采纳,获得10
13秒前
独特乘风完成签到,获得积分10
16秒前
含糊的代丝完成签到 ,获得积分10
19秒前
朴素的紫安完成签到 ,获得积分10
20秒前
yyj完成签到,获得积分10
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
君临完成签到,获得积分10
22秒前
林早上完成签到,获得积分20
22秒前
xiu完成签到 ,获得积分10
23秒前
栗爷完成签到,获得积分0
23秒前
深年完成签到,获得积分10
24秒前
求知若渴完成签到,获得积分0
24秒前
所所应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得30
24秒前
李爱国应助科研通管家采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029