Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 化学 植物 物理化学 生物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到,获得积分10
1秒前
1秒前
土豪的紫荷完成签到 ,获得积分10
2秒前
光怪发布了新的文献求助10
2秒前
半糖完成签到,获得积分10
2秒前
niu发布了新的文献求助10
2秒前
蒸馏水完成签到,获得积分10
4秒前
6秒前
6秒前
koukaki完成签到,获得积分10
8秒前
windtalker发布了新的文献求助10
8秒前
地球观光客完成签到,获得积分10
9秒前
Orange应助啦啦啦采纳,获得10
10秒前
乐观的雅青完成签到,获得积分10
10秒前
Maggies完成签到,获得积分10
10秒前
10秒前
cloud发布了新的文献求助30
11秒前
含糊的安柏关注了科研通微信公众号
12秒前
stars发布了新的文献求助10
13秒前
小蘑菇应助woxiangbiye采纳,获得10
14秒前
无畏发布了新的文献求助10
14秒前
14秒前
15秒前
无奈的寻芹应助封虞采纳,获得10
16秒前
lqg完成签到,获得积分20
16秒前
17秒前
17秒前
18秒前
Maggies发布了新的文献求助10
18秒前
向雫发布了新的文献求助10
19秒前
20秒前
21秒前
萌~Lucky发布了新的文献求助10
21秒前
烟花应助科研通管家采纳,获得10
22秒前
球球应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
yar应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
23秒前
科研通AI2S应助秀丽蜜粉采纳,获得10
23秒前
球球应助科研通管家采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301837
求助须知:如何正确求助?哪些是违规求助? 2936365
关于积分的说明 8477483
捐赠科研通 2610167
什么是DOI,文献DOI怎么找? 1425007
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646373