Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 化学 植物 物理化学 生物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小马甲应助pipi采纳,获得10
2秒前
3秒前
tttt发布了新的文献求助10
4秒前
小小科学家完成签到,获得积分10
4秒前
senli2018发布了新的文献求助10
5秒前
5秒前
JamesPei应助Ann采纳,获得10
5秒前
整齐的忆彤完成签到,获得积分10
6秒前
木子水告完成签到,获得积分10
7秒前
7秒前
selitina完成签到,获得积分10
8秒前
ccz发布了新的文献求助10
9秒前
思源应助北北北采纳,获得10
10秒前
Floeaee完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
害羞雨莲发布了新的文献求助10
13秒前
15秒前
zkl998完成签到,获得积分10
16秒前
CodeCraft应助一二三采纳,获得10
16秒前
莫愁发布了新的文献求助20
18秒前
www完成签到,获得积分10
18秒前
18秒前
科研通AI6应助清飞采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
20秒前
大龙哥886应助科研通管家采纳,获得10
20秒前
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
21秒前
大龙哥886应助科研通管家采纳,获得10
21秒前
mashibeo应助科研通管家采纳,获得10
21秒前
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454336
求助须知:如何正确求助?哪些是违规求助? 4561683
关于积分的说明 14283330
捐赠科研通 4485635
什么是DOI,文献DOI怎么找? 2456855
邀请新用户注册赠送积分活动 1447529
关于科研通互助平台的介绍 1422830