Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 化学 植物 物理化学 生物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
2秒前
洞两发布了新的文献求助10
2秒前
2秒前
2秒前
bt4567发布了新的文献求助10
3秒前
秀丽静曼发布了新的文献求助10
3秒前
沉静的之桃完成签到 ,获得积分10
3秒前
3秒前
尼古拉斯佩奇完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
wangxinji完成签到,获得积分10
5秒前
小青椒应助科研通管家采纳,获得200
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
CYANjane应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
qingmoheng应助科研通管家采纳,获得50
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
梓然完成签到,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
SciGPT应助codwest采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125