Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 化学 植物 物理化学 生物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
翻斗花园小美完成签到,获得积分10
2秒前
4秒前
共享精神应助讨厌科研采纳,获得10
5秒前
余南发布了新的文献求助10
5秒前
6秒前
李子发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
双楠应助SAVP采纳,获得10
10秒前
oui发布了新的文献求助10
11秒前
朴实桐应助花痴的语堂采纳,获得10
11秒前
11秒前
科目三应助东晓采纳,获得10
12秒前
loski发布了新的文献求助10
12秒前
清爽如雪完成签到 ,获得积分10
12秒前
Orange应助hanleiharry1采纳,获得10
15秒前
王海海发布了新的文献求助10
15秒前
16秒前
Xin发布了新的文献求助10
16秒前
mrx完成签到,获得积分20
17秒前
18秒前
孙燕应助光热效应采纳,获得30
21秒前
朴实桐应助花痴的语堂采纳,获得10
22秒前
香香完成签到,获得积分10
23秒前
大脑袋媛媛完成签到,获得积分10
24秒前
夏日发布了新的文献求助10
26秒前
26秒前
hanleiharry1发布了新的文献求助10
27秒前
28秒前
张雯思发布了新的文献求助10
28秒前
29秒前
晚意意意意意完成签到 ,获得积分10
30秒前
33秒前
柯幼萱发布了新的文献求助10
33秒前
33秒前
nightmare发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174