Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 物理化学 化学 生物 植物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆茹妖发布了新的文献求助10
刚刚
刚刚
1秒前
dddd完成签到,获得积分10
2秒前
zhui发布了新的文献求助10
2秒前
八十发布了新的文献求助10
3秒前
鹿芩完成签到,获得积分10
4秒前
luxxxiu完成签到,获得积分10
6秒前
顺顺关注了科研通微信公众号
6秒前
眼睛大老姆完成签到,获得积分10
6秒前
18275412695完成签到,获得积分10
6秒前
7秒前
科目三应助xjtu采纳,获得10
7秒前
8秒前
8秒前
在水一方应助热情芝麻采纳,获得10
8秒前
害羞的玉米完成签到,获得积分10
8秒前
10秒前
10秒前
李来仪发布了新的文献求助10
11秒前
英姑应助yangyong采纳,获得10
11秒前
11秒前
NexusExplorer应助通通通采纳,获得10
11秒前
liying完成签到,获得积分10
12秒前
12秒前
13秒前
王石雨晨完成签到 ,获得积分10
13秒前
13秒前
18275412695发布了新的文献求助10
13秒前
研0完成签到,获得积分10
14秒前
丁昆发布了新的文献求助10
15秒前
锦墨人生发布了新的文献求助30
16秒前
科研通AI5应助猪猪hero采纳,获得10
16秒前
NexusExplorer应助无情的白桃采纳,获得10
17秒前
sommer12345完成签到 ,获得积分10
17秒前
润润轩轩发布了新的文献求助10
18秒前
丁昆完成签到,获得积分10
20秒前
ding应助热情的阿猫桑采纳,获得10
22秒前
我是老大应助麦麦采纳,获得10
22秒前
Lyven发布了新的文献求助30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794