材料科学
极限抗拉强度
奥氏体
微观结构
沉淀硬化
延展性(地球科学)
冶金
降水
马氏体
复合材料
蠕动
物理
气象学
作者
Hobyung Chae,Sangyeob Lim,Tae‐Ho Lee,Eun Joo Shin,Joo‐Won Suh,Suk Hoon Kang,Soo Yeol Lee
出处
期刊:Materials
[MDPI AG]
日期:2023-12-08
卷期号:16 (24): 7557-7557
摘要
This study investigates the tensile behaviors of additively manufactured (AM) 17-4PH stainless steels heat-treated within various temperature ranges from 400 °C to 700 °C in order to identify the effective aging temperature. Despite an aging treatment of 400-460 °C increasing the retained austenite content, an enhancement of the tensile properties was achieved without a strength-ductility trade-off owing to precipitation hardening by the Cu particles. Due to the intricate evolution of the microstructure, aging treatments above 490 °C led to a loss in yield strength and ductility. A considerable rise in strength and a decrease in ductility were brought about by the increase in the fraction of precipitation-hardened martensitic matrix in aging treatments over 640 °C. The impact of heat-treatment pathways on aging effectiveness and tensile anisotropy was then examined. Direct aging at 482 °C for an hour had hardly any effect on wrought 17-4PH, but it increased the yield strength of AM counterparts from 436-457 to 588-604 MPa. A solid-solution treatment at 1038 °C for one hour resulted in a significant drop in the austenite fraction, which led to an increase in the yield (from 436-457 to 841-919 MPa) and tensile strengths (from 1106-1127 to 1254-1256 MPa) with a sacrifice in ductility. Improved strength and ductility were realized by a solid-solution followed by an aging treatment, achieving 1371-1399 MPa. The tensile behaviors of AM 17-4PH were isotropic both parallel and perpendicular to the building direction.
科研通智能强力驱动
Strongly Powered by AbleSci AI