亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A mechanism-guided machine learning method for mapping gapless land surface temperature

遥感 无缝回放 机制(生物学) 计算机科学 环境科学 地质学 物理 量子力学 操作系统
作者
Jun Ma,Michael K. Ng,Menghui Jiang,Liupeng Lin,C.‐I. Meng,Chao Zeng,Huifang Li,Penghai Wu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:303: 114001-114001 被引量:3
标识
DOI:10.1016/j.rse.2024.114001
摘要

More accurate, spatio-temporally, and physically consistent land surface temperature (LST) estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a mechanism-guided ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable mechanistic guidance is incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which only uses remote sensing data as input, serves as the pure ML model. Mechanistic guidance (MG) is coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the MG-LGBM model, which incorporates surface energy balance (SEB) guidance underlying the data in CLM-LST modeling within a biophysical framework. Results indicate that, MG-LGBM model shows a good accuracy for the sample-based validation, with a root-mean-square error of 1.23–2.03 K, and a Pearson correlation coefficient of 0.99. Validation with four independent ground measurements shows that MG-LGBM can generate clear-sky LST that is comparable to the original Moderate Resolution Imaging Spectroradiometer- (MODIS) LST under fully clear-sky conditions and can correct for the likely cloud-contaminated LST pixels. The generated LST also presents a high accuracy (RMSE = 2.91–3.66 K and R = 0.97–0.98) under cloudy-sky conditions. Compared with a pure mechanistic method and pure ML methods, the MG-LGBM model improves the prediction accuracy and mechanistic interpretability of LST. It also demonstrates a good extrapolation ability in the regions without valid samples, suggesting that the predictions of MG-LGBM model not only exhibit low errors on the training dataset but also align consistently with the known mechanistic laws in the unlabeled set. Compared with other popular ML methods and sophisticated gapless products, the MG-LGBM model delivers a superior validation accuracy and image quality. The proposed method represents an innovative way to map accurate and mechanistically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
硬汉的长强穴完成签到,获得积分10
刚刚
3秒前
阳阳阳完成签到 ,获得积分10
3秒前
吕懿发布了新的文献求助10
8秒前
圆圆圆完成签到 ,获得积分10
9秒前
满意的芸完成签到 ,获得积分10
19秒前
领导范儿应助Mok采纳,获得10
27秒前
Enchanted完成签到 ,获得积分10
34秒前
37秒前
衣裳薄完成签到,获得积分10
37秒前
领导范儿应助阿意采纳,获得10
41秒前
42秒前
Mok发布了新的文献求助10
42秒前
桃子发布了新的文献求助10
47秒前
zho发布了新的文献求助10
54秒前
谦让凝琴完成签到,获得积分10
57秒前
随性随缘随命完成签到 ,获得积分10
1分钟前
1分钟前
bubble发布了新的文献求助20
1分钟前
懒洋洋发布了新的文献求助10
1分钟前
摸猪头完成签到,获得积分10
1分钟前
朱珠贝完成签到,获得积分10
1分钟前
领导范儿应助桃子采纳,获得10
1分钟前
bubble完成签到,获得积分10
1分钟前
Hayat应助科研通管家采纳,获得10
1分钟前
Diplogen完成签到,获得积分10
1分钟前
谦让凝琴发布了新的文献求助10
1分钟前
隐形曼青应助懒洋洋采纳,获得10
2分钟前
在水一方应助tyh330011采纳,获得10
2分钟前
orixero应助ely采纳,获得10
2分钟前
2分钟前
科目三应助墨瞳采纳,获得10
2分钟前
漠北发布了新的文献求助10
2分钟前
2分钟前
2分钟前
tyh330011发布了新的文献求助10
2分钟前
fin完成签到 ,获得积分10
2分钟前
英俊的铭应助明理雨真采纳,获得10
2分钟前
Raunio完成签到,获得积分10
2分钟前
tyh330011完成签到,获得积分20
2分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130122
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750386
捐赠科研通 2436099
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623708
版权声明 600570