A mechanism-guided machine learning method for mapping gapless land surface temperature

遥感 无缝回放 机制(生物学) 计算机科学 环境科学 地质学 物理 量子力学 操作系统
作者
Jun Ma,Huanfeng Shen,Menghui Jiang,Liupeng Lin,C.‐I. Meng,Chao Zeng,Huifang Li,Penghai Wu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:303: 114001-114001 被引量:18
标识
DOI:10.1016/j.rse.2024.114001
摘要

More accurate, spatio-temporally, and physically consistent land surface temperature (LST) estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a mechanism-guided ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable mechanistic guidance is incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which only uses remote sensing data as input, serves as the pure ML model. Mechanistic guidance (MG) is coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the MG-LGBM model, which incorporates surface energy balance (SEB) guidance underlying the data in CLM-LST modeling within a biophysical framework. Results indicate that, MG-LGBM model shows a good accuracy for the sample-based validation, with a root-mean-square error of 1.23–2.03 K, and a Pearson correlation coefficient of 0.99. Validation with four independent ground measurements shows that MG-LGBM can generate clear-sky LST that is comparable to the original Moderate Resolution Imaging Spectroradiometer- (MODIS) LST under fully clear-sky conditions and can correct for the likely cloud-contaminated LST pixels. The generated LST also presents a high accuracy (RMSE = 2.91–3.66 K and R = 0.97–0.98) under cloudy-sky conditions. Compared with a pure mechanistic method and pure ML methods, the MG-LGBM model improves the prediction accuracy and mechanistic interpretability of LST. It also demonstrates a good extrapolation ability in the regions without valid samples, suggesting that the predictions of MG-LGBM model not only exhibit low errors on the training dataset but also align consistently with the known mechanistic laws in the unlabeled set. Compared with other popular ML methods and sophisticated gapless products, the MG-LGBM model delivers a superior validation accuracy and image quality. The proposed method represents an innovative way to map accurate and mechanistically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳熊发布了新的文献求助30
刚刚
科研通AI6应助Gaoge采纳,获得10
1秒前
今后应助123采纳,获得10
1秒前
1秒前
辰昜完成签到,获得积分10
1秒前
852应助阿巴理采纳,获得10
3秒前
Jasper应助知行合一采纳,获得10
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
3秒前
3秒前
等待孤云完成签到,获得积分10
4秒前
4秒前
汉堡包应助哈哈哈采纳,获得10
4秒前
辛勤的大白完成签到,获得积分10
4秒前
5秒前
Rrrr完成签到,获得积分10
6秒前
6秒前
灯灯发布了新的文献求助10
6秒前
lila完成签到,获得积分20
7秒前
7秒前
LPP完成签到,获得积分20
7秒前
隐形曼青应助soon采纳,获得10
7秒前
8秒前
跳跳熊发布了新的文献求助30
8秒前
舒庆春发布了新的文献求助10
9秒前
甜甜亦巧完成签到,获得积分10
9秒前
坦率的惊蛰完成签到,获得积分10
9秒前
10秒前
10秒前
略略略发布了新的文献求助30
10秒前
今后应助陈秋艳采纳,获得10
11秒前
11秒前
123完成签到,获得积分20
11秒前
鸭鸭乐园发布了新的文献求助10
12秒前
善学以致用应助一个饼采纳,获得10
12秒前
13秒前
顾矜应助苗秋实采纳,获得10
13秒前
leishuo发布了新的文献求助50
13秒前
今后应助guoguo采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107