Development, validation, and transportability of several machine-learned, non-exercise-based VO2max prediction models for older adults

Lasso(编程语言) 四分位数 随机森林 最大VO2 支持向量机 机器学习 数学 统计 线性回归 医学 计算机科学 内科学 心率 置信区间 万维网 血压
作者
Benjamin T. Schumacher,Michael J. LaMonte,Andrea Z. LaCroix,Eleanor M. Simonsick,Steven P. Hooker,Humberto Parada,John Bellettiere,Arun Kumar
出处
期刊:Journal of Sport and Health Science [Elsevier BV]
标识
DOI:10.1016/j.jshs.2024.02.004
摘要

There exist few maximal oxygen uptake (VO2max) non-exercise-based prediction equations, fewer using machine-learning (ML), and none specifically for older adults. Since direct measurement of VO2max is infeasible in large epidemiologic cohort studies, we sought to develop, validate, compare, and assess the transportability of several ML VO2max prediction algorithms. Baltimore Longitudinal Study of Aging (BLSA) participants with valid VO2max tests were included (n = 1080). Least Absolute Shrinkage and Selection Operator (LASSO), linear- and tree-boosted xgboost, random forest, and Support Vector Machine (SVM) algorithms were trained to predict VO2max values. We developed these algorithms for: (a) the overall BLSA, (b) by sex, (c) using all BLSA variables, and (d) variables common in aging cohorts. Finally, we quantified the associations between measured and predicted VO2max and mortality. The age was 69.0 ± 10.4 years (mean ± SD) and the measured VO2max was 21.6 ± 5.9 mL/kg/min. LASSO, linear- and tree-boosted xgboost, random forest, and SVM yielded root mean squared errors (RMSEs) of 3.4 mL/kg/min, 3.6 mL/kg/min, 3.4 mL/kg/min, 3.6 mL/kg/min, and 3.5 mL/kg/min, respectively. Incremental quartiles of measured VO2max showed an inverse gradient in mortality risk. Predicted VO2max variables yielded similar effect estimates but were not robust to adjustment. Measured VO2max is a strong predictor of mortality. Using ML can improve the accuracy of prediction as compared to simpler approaches but estimates of association with mortality remain sensitive to adjustment. Future studies should seek to reproduce these results so that VO2max, an important vital sign, can be more broadly studied as a modifiable target for promoting functional resiliency and healthy aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kun完成签到,获得积分10
1秒前
杨柳9203完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
zer0发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
汉堡包应助CHERIE采纳,获得10
5秒前
畅快手套发布了新的文献求助50
5秒前
JamesPei应助cosmos007采纳,获得10
5秒前
浅梦星河完成签到,获得积分10
5秒前
看火人完成签到 ,获得积分10
6秒前
Jasper应助嘟嘟嘟嘟嘟采纳,获得10
6秒前
6秒前
7秒前
AronHUANG完成签到,获得积分10
7秒前
奔波儿灞完成签到,获得积分20
7秒前
8秒前
fang完成签到,获得积分10
8秒前
9秒前
9秒前
玖玖发布了新的文献求助10
9秒前
科研小民工应助Nicole采纳,获得30
10秒前
科研通AI5应助kiuikiu采纳,获得10
10秒前
100发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
bkagyin应助忧伤的元菱采纳,获得10
12秒前
科研通AI5应助fang采纳,获得10
12秒前
芈冖完成签到,获得积分10
13秒前
无辜雁易完成签到,获得积分20
13秒前
冷静灵竹完成签到,获得积分10
14秒前
隐形曼青应助欢喜的雁枫采纳,获得10
14秒前
14秒前
杨柳9203发布了新的文献求助10
14秒前
14秒前
研友_ZzwoR8完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668230
求助须知:如何正确求助?哪些是违规求助? 3226593
关于积分的说明 9770416
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608642
邀请新用户注册赠送积分活动 759754
科研通“疑难数据库(出版商)”最低求助积分说明 735537