SPCB-Net: A Multi-Scale Skin Cancer Image Identification Network Using Self-Interactive Attention Pyramid and Cross-Layer Bilinear-Trilinear Pooling

联营 双线性插值 棱锥(几何) 计算机科学 卷积神经网络 人工智能 特征(语言学) 模式识别(心理学) 上下文图像分类 鉴定(生物学) 图像(数学) 计算机视觉 数学 语言学 哲学 植物 几何学 生物
作者
Xin Qian,Tengfei Weng,Qi Han,Chen Wu,HongXiang Xu,Mingyang Hou,Zicheng Qiu,Baoping Zhou,Xianqiang Gao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 2272-2287 被引量:2
标识
DOI:10.1109/access.2023.3347424
摘要

Deep convolutional neural networks have made some progress in skin lesion classification and cancer diagnosis, but there are still some problems to be solved, such as the challenge of small inter-class feature differences and large intra-class feature differences, which might limit the classification performance of the model as high-level and low-level features are not properly utilized. This paper proposes a multi-scale skin cancer image identification network using self-interactive attention pyramid and cross-layer bilinear-trilinear pooling(SPCB-Net), which mainly consists of three proposed sub-modules that are the self-interacting attention pyramid (SAP), the across-layer bilinear-trilinear pooling operation and the global average algorithm(GAA). The SPCB-Net is applied to two representative datasets of medical images in dermatology and histopathology (HAM10000 and NCT-CRC-HE-100K) to demonstrate the effectiveness of in the skin lesion classification. SPCB-Net(ResNet101) achieves 97.10% and 99.87% accuracy on HAM10000 and NCT-CRC-HE-100K respectively, which are both achieved performance improvements of 0.4% compared to the state-of-the-art models. In addition, a large number of experiments on HAM10000 show that the interactive attention pyramid(SPA) proposed in this paper is superior to the common attention module, and the method with a cross-layer bilinear-trilinear pooling is superior to the cross-layer trilinear pooling method. SPCB-Net is configured on Vgg19 and ResNet101 to evaluate the effectiveness of our proposed module. The experimental results show that SPCB-Net has shown state-of-the-art performance in the two field of dermatology and histopathology. Therefore, it is not only well qualified for the task of identifying skin cancer image but also has the potential to identify skin cancer by identifying pathological tissue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助kento采纳,获得20
刚刚
lin发布了新的文献求助10
刚刚
Orange应助zyyao采纳,获得10
刚刚
1秒前
dlfg发布了新的文献求助20
1秒前
思源应助wmk采纳,获得10
2秒前
烟花应助陈陈陈采纳,获得10
2秒前
2秒前
megan发布了新的文献求助10
2秒前
张张应助羽冰酒采纳,获得50
3秒前
anjun完成签到,获得积分10
3秒前
领导范儿应助芝麻糊了采纳,获得10
3秒前
wanci应助诚心闭月采纳,获得10
4秒前
包包发布了新的文献求助40
4秒前
4秒前
科研通AI2S应助wang123采纳,获得10
4秒前
NPC应助李喜喜采纳,获得10
4秒前
琉璃苣发布了新的文献求助10
5秒前
xiemou完成签到,获得积分10
5秒前
6秒前
小马甲应助MoXian采纳,获得10
6秒前
6秒前
6秒前
笑点低衬衫完成签到 ,获得积分10
7秒前
7秒前
7秒前
OPO完成签到,获得积分10
7秒前
8秒前
9秒前
酱酱君完成签到,获得积分10
10秒前
10秒前
琉璃苣完成签到,获得积分10
10秒前
沐阳d完成签到,获得积分10
11秒前
满天星完成签到,获得积分10
11秒前
Yeah_椰椰完成签到,获得积分10
12秒前
冷傲达发布了新的文献求助10
13秒前
沐阳d发布了新的文献求助10
13秒前
酱酱君发布了新的文献求助10
13秒前
14秒前
汉堡包应助坚果采纳,获得10
14秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179