High-density cluster core-based k-means clustering with an unknown number of clusters

聚类分析 计算机科学 人工智能
作者
Abhimanyu Kumar,Abhishek Kumar,Rammohan Mallipeddi,Dong-Gyu Lee
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111419-111419 被引量:2
标识
DOI:10.1016/j.asoc.2024.111419
摘要

The k-means algorithm, known for its simplicity and adaptability, faces challenges related to manual cluster number selection and sensitivity to initial centroid placement. This paper introduces an innovative framework aimed at overcoming these challenges. By proposing a data-driven cluster number estimation method and a robust initialization strategy based on high-density cluster cores, our approach revolutionizes k-means, unlocking its full unsupervised potential and ensuring superior performance, even in scenarios involving overlapping clusters. The method employs a novel density-based technique to accurately identify cluster cores, resulting in substantial improvements over existing methods. Rigorous experimentation on synthetic and real-world datasets demonstrates an average performance enhancement of 15% in terms of the Adjusted Rand Index for datasets with overlapping clusters, surpassing the capabilities of state-of-the-art density-based clustering methods and traditional k-means. Moreover, our method autonomously determines the optimal number of clusters, facilitating true unsupervised learning and eliminating the impact of initial centroid placement on clustering outcomes. This leads to stable and consistent results, addressing key limitations of the conventional k-means algorithm. The practical applicability of our approach is exemplified in image segmentation tasks, showcasing its versatility and reliability in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yin完成签到,获得积分10
刚刚
刚刚
刚刚
面包牛奶会有的完成签到,获得积分10
刚刚
刚刚
三三四完成签到,获得积分10
1秒前
yulong完成签到,获得积分10
1秒前
2秒前
2秒前
lfzw完成签到,获得积分10
2秒前
A阿澍完成签到,获得积分10
3秒前
馒头完成签到,获得积分10
3秒前
4秒前
Zzzhuan发布了新的文献求助10
4秒前
脑残骑士老张完成签到,获得积分10
4秒前
oyfff完成签到 ,获得积分10
5秒前
诡计多端发布了新的文献求助10
5秒前
大壮完成签到,获得积分10
5秒前
乌漆嘛黑完成签到,获得积分10
5秒前
权志龙完成签到,获得积分10
5秒前
哈哈是你发布了新的文献求助10
5秒前
秘小先儿完成签到,获得积分10
5秒前
ohnk发布了新的文献求助10
5秒前
5秒前
学术学习发布了新的文献求助10
6秒前
坚强的赛凤完成签到,获得积分10
6秒前
starry完成签到 ,获得积分10
6秒前
7秒前
丘比特应助失眠的海云采纳,获得10
7秒前
木一发布了新的文献求助10
7秒前
张大泽同学完成签到 ,获得积分10
8秒前
虚幻芷文发布了新的文献求助10
9秒前
9秒前
9秒前
OnionJJ完成签到,获得积分10
9秒前
从容的冰凡完成签到,获得积分20
9秒前
Liar完成签到,获得积分10
10秒前
不带们完成签到,获得积分10
10秒前
wanci应助erdongsir采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478