High-density cluster core-based k-means clustering with an unknown number of clusters

聚类分析 计算机科学 人工智能
作者
Abhimanyu Kumar,Abhishek Kumar,Rammohan Mallipeddi,Dong-Gyu Lee
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111419-111419 被引量:2
标识
DOI:10.1016/j.asoc.2024.111419
摘要

The k-means algorithm, known for its simplicity and adaptability, faces challenges related to manual cluster number selection and sensitivity to initial centroid placement. This paper introduces an innovative framework aimed at overcoming these challenges. By proposing a data-driven cluster number estimation method and a robust initialization strategy based on high-density cluster cores, our approach revolutionizes k-means, unlocking its full unsupervised potential and ensuring superior performance, even in scenarios involving overlapping clusters. The method employs a novel density-based technique to accurately identify cluster cores, resulting in substantial improvements over existing methods. Rigorous experimentation on synthetic and real-world datasets demonstrates an average performance enhancement of 15% in terms of the Adjusted Rand Index for datasets with overlapping clusters, surpassing the capabilities of state-of-the-art density-based clustering methods and traditional k-means. Moreover, our method autonomously determines the optimal number of clusters, facilitating true unsupervised learning and eliminating the impact of initial centroid placement on clustering outcomes. This leads to stable and consistent results, addressing key limitations of the conventional k-means algorithm. The practical applicability of our approach is exemplified in image segmentation tasks, showcasing its versatility and reliability in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小龟发布了新的文献求助10
2秒前
爱笑灵竹发布了新的文献求助10
2秒前
个性冰棍完成签到,获得积分20
2秒前
悦动完成签到,获得积分10
3秒前
5秒前
6秒前
wg发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
爆米花应助FRL采纳,获得10
11秒前
melody发布了新的文献求助10
11秒前
amai发布了新的文献求助10
12秒前
12秒前
pofeng发布了新的文献求助10
14秒前
义气的跳跳糖完成签到,获得积分20
15秒前
15秒前
FashionBoy应助勤劳怜寒采纳,获得20
15秒前
15秒前
15秒前
hongjie_w发布了新的文献求助10
17秒前
hannibal发布了新的文献求助10
17秒前
sissy发布了新的文献求助10
18秒前
amai完成签到,获得积分10
20秒前
陈龙艳发布了新的文献求助10
21秒前
21秒前
hongjie_w完成签到,获得积分10
23秒前
Soleil发布了新的文献求助10
23秒前
毛豆应助踏实小虾米采纳,获得30
25秒前
WYC完成签到,获得积分10
25秒前
25秒前
Pauline发布了新的文献求助10
25秒前
ljq发布了新的文献求助10
27秒前
27秒前
28秒前
陈龙艳完成签到,获得积分10
28秒前
yuki完成签到,获得积分10
29秒前
30秒前
xlj完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056197
求助须知:如何正确求助?哪些是违规求助? 2712820
关于积分的说明 7433125
捐赠科研通 2357792
什么是DOI,文献DOI怎么找? 1249053
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195