Concurrent and continuous estimation of multi-finger forces by synergy mapping and reconstruction: a pilot study

计算机科学 等长运动 加权 肌电图 人工智能 模式识别(心理学) 物理医学与康复 声学 医学 物理疗法 物理
作者
Zhicheng Teng,Guanghua Xu,Xun Zhang,Xiaobi Chen,Sicong Zhang,Hsien-Yung Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066024-066024
标识
DOI:10.1088/1741-2552/ad10d1
摘要

Abstract Objective. The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control. Approach . Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure. Main results . We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance ( R 2 = 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks ( R 2 = 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability. Significance . This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助小伏采纳,获得10
刚刚
刚刚
1秒前
情怀应助虚拟的乐松采纳,获得10
1秒前
2秒前
2秒前
2秒前
ShawnJohn发布了新的文献求助10
2秒前
3秒前
麻辣香锅完成签到,获得积分10
3秒前
Khalil发布了新的文献求助10
4秒前
正直的文涛完成签到 ,获得积分10
4秒前
liao_duoduo完成签到,获得积分10
4秒前
ily.发布了新的文献求助10
4秒前
科研通AI6应助吴婉秋采纳,获得10
4秒前
5秒前
6秒前
勤恳青亦发布了新的文献求助10
7秒前
7秒前
研友_VZG7GZ应助研友_nEoMy8采纳,获得10
7秒前
7秒前
小飞发布了新的文献求助10
7秒前
浪里小白龙完成签到,获得积分10
8秒前
8秒前
充电宝应助敏感狗采纳,获得10
9秒前
Lllleen完成签到 ,获得积分10
9秒前
9秒前
科研通AI6应助生动的以南采纳,获得10
10秒前
10秒前
Khalil完成签到,获得积分10
10秒前
金咪发布了新的文献求助10
11秒前
今后应助爱吃蔬菜采纳,获得10
11秒前
12秒前
12秒前
jin发布了新的文献求助10
13秒前
14秒前
赘婿应助zhq采纳,获得10
14秒前
明镜完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939