Concurrent and continuous estimation of multi-finger forces by synergy mapping and reconstruction: a pilot study

计算机科学 等长运动 加权 肌电图 人工智能 模式识别(心理学) 物理医学与康复 声学 医学 物理疗法 物理
作者
Zhicheng Teng,Guanghua Xu,Xun Zhang,Xiaobi Chen,Sicong Zhang,Hsien-Yung Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066024-066024
标识
DOI:10.1088/1741-2552/ad10d1
摘要

Abstract Objective. The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control. Approach . Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure. Main results . We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance ( R 2 = 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks ( R 2 = 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability. Significance . This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanjingwan发布了新的文献求助100
1秒前
完美世界应助学术laji采纳,获得10
1秒前
1秒前
344061512发布了新的文献求助10
1秒前
小二郎应助路痴采纳,获得10
1秒前
尽平梅愿完成签到,获得积分10
2秒前
pake发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
快乐战神没烦恼完成签到,获得积分10
5秒前
5秒前
英吉利25发布了新的文献求助30
6秒前
T_MC郭完成签到,获得积分10
6秒前
博士后应助坚定以筠采纳,获得10
6秒前
adasdad完成签到,获得积分10
6秒前
cqnuly完成签到,获得积分10
7秒前
科研通AI6应助牛牛牛采纳,获得10
7秒前
7秒前
丫丫完成签到,获得积分10
7秒前
承欢完成签到,获得积分10
7秒前
李哈哈发布了新的文献求助10
8秒前
JamesPei应助略略略采纳,获得10
9秒前
SHIJ发布了新的文献求助10
9秒前
科研完成签到,获得积分10
9秒前
10秒前
小叶子发布了新的文献求助10
10秒前
大模型应助dfg采纳,获得10
10秒前
量子星尘发布了新的文献求助50
10秒前
陶醉小笼包完成签到 ,获得积分10
11秒前
11秒前
万能图书馆应助zone54188采纳,获得10
11秒前
落后的小伙完成签到,获得积分10
11秒前
丁大发布了新的文献求助10
12秒前
可玩性完成签到 ,获得积分10
12秒前
lei完成签到 ,获得积分20
13秒前
旸羽完成签到,获得积分10
13秒前
老程完成签到,获得积分10
13秒前
一颗菠菜完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571800
求助须知:如何正确求助?哪些是违规求助? 3992744
关于积分的说明 12359771
捐赠科研通 3665912
什么是DOI,文献DOI怎么找? 2020329
邀请新用户注册赠送积分活动 1054614
科研通“疑难数据库(出版商)”最低求助积分说明 942138