Concurrent and continuous estimation of multi-finger forces by synergy mapping and reconstruction: a pilot study

计算机科学 等长运动 加权 肌电图 人工智能 模式识别(心理学) 物理医学与康复 声学 医学 物理 物理疗法
作者
Zhicheng Teng,Guanghua Xu,Xun Zhang,Xiaobi Chen,Sicong Zhang,Hsien-Yung Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066024-066024
标识
DOI:10.1088/1741-2552/ad10d1
摘要

Abstract Objective. The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control. Approach . Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure. Main results . We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance ( R 2 = 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks ( R 2 = 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability. Significance . This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助LILING采纳,获得10
刚刚
iRan完成签到,获得积分10
1秒前
落忆完成签到 ,获得积分10
1秒前
蜡笔完成签到,获得积分10
1秒前
趁微风不躁完成签到,获得积分10
1秒前
通~发布了新的文献求助10
2秒前
2秒前
张磊完成签到,获得积分10
2秒前
冷艳的太君完成签到,获得积分10
3秒前
3秒前
科目三应助wwwww采纳,获得10
4秒前
4秒前
4秒前
5秒前
CH完成签到 ,获得积分10
5秒前
xiuxiu_27发布了新的文献求助10
6秒前
April发布了新的文献求助10
6秒前
打打应助核桃采纳,获得10
6秒前
6秒前
elena发布了新的文献求助10
6秒前
现代的战斗机完成签到,获得积分10
6秒前
刘星星发布了新的文献求助10
7秒前
萧秋灵完成签到,获得积分10
7秒前
7秒前
8秒前
YaoX完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
YE发布了新的文献求助10
9秒前
9秒前
10秒前
张肥肥完成签到 ,获得积分20
10秒前
明亮的斩关注了科研通微信公众号
10秒前
科研通AI5应助搞怪的人龙采纳,获得10
10秒前
11秒前
xiuxiu_27完成签到 ,获得积分10
11秒前
李健应助qym采纳,获得10
12秒前
风趣的爆米花完成签到,获得积分20
12秒前
韭菜发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740