Concurrent and continuous estimation of multi-finger forces by synergy mapping and reconstruction: a pilot study

计算机科学 等长运动 加权 肌电图 人工智能 模式识别(心理学) 物理医学与康复 声学 医学 物理疗法 物理
作者
Zhicheng Teng,Guanghua Xu,Xun Zhang,Xiaobi Chen,Sicong Zhang,Hsien-Yung Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066024-066024
标识
DOI:10.1088/1741-2552/ad10d1
摘要

Abstract Objective. The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control. Approach . Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure. Main results . We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance ( R 2 = 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks ( R 2 = 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability. Significance . This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
早日毕业完成签到,获得积分10
刚刚
juaner发布了新的文献求助10
刚刚
潇洒依白关注了科研通微信公众号
1秒前
1秒前
1秒前
qqq发布了新的文献求助10
2秒前
2秒前
醉尘发布了新的文献求助10
3秒前
4秒前
WYR发布了新的文献求助20
5秒前
Narcissus完成签到,获得积分10
6秒前
邱晨凯发布了新的文献求助10
7秒前
科研通AI6应助研友_892kOL采纳,获得10
7秒前
loyal发布了新的文献求助10
7秒前
牙膏616发布了新的文献求助10
7秒前
华仔应助zj3tears采纳,获得10
10秒前
浮游应助xhd2814采纳,获得10
11秒前
老迟到的晓露完成签到,获得积分10
11秒前
哈哈哈发布了新的文献求助10
11秒前
xona完成签到,获得积分10
11秒前
12秒前
乐观紫霜发布了新的文献求助10
14秒前
16秒前
Lucas应助甜甜圈采纳,获得10
16秒前
xuexi完成签到,获得积分10
16秒前
开心果发布了新的文献求助10
16秒前
万能图书馆应助夜行采纳,获得10
17秒前
18秒前
dyy完成签到,获得积分10
18秒前
乐乐应助qqq采纳,获得10
19秒前
19秒前
bkagyin应助高挑的梦芝采纳,获得10
20秒前
20秒前
醉尘完成签到,获得积分10
20秒前
jjy发布了新的文献求助100
21秒前
充电宝应助ZHAOYUN采纳,获得10
21秒前
21秒前
xhd2814给xhd2814的求助进行了留言
22秒前
zj3tears发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565