Concurrent and continuous estimation of multi-finger forces by synergy mapping and reconstruction: a pilot study

计算机科学 等长运动 加权 肌电图 人工智能 模式识别(心理学) 物理医学与康复 声学 医学 物理 物理疗法
作者
Zhicheng Teng,Guanghua Xu,Xun Zhang,Xiaobi Chen,Sicong Zhang,Hsien-Yung Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066024-066024
标识
DOI:10.1088/1741-2552/ad10d1
摘要

Abstract Objective. The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control. Approach . Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure. Main results . We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance ( R 2 = 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks ( R 2 = 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability. Significance . This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZOE应助大力蚂蚁采纳,获得50
刚刚
科目三应助退休小行星采纳,获得10
1秒前
3秒前
kk完成签到 ,获得积分10
3秒前
5秒前
5秒前
8秒前
zz发布了新的文献求助10
8秒前
wx0816完成签到,获得积分10
8秒前
9秒前
JingjingYao完成签到,获得积分10
10秒前
weiwei完成签到,获得积分10
10秒前
DD0066发布了新的文献求助10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
ieee拯救者完成签到,获得积分10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
lexi应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
曾无忧应助科研通管家采纳,获得10
12秒前
曾无忧应助科研通管家采纳,获得10
12秒前
曾无忧应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
如溪如何完成签到,获得积分10
13秒前
Jasper应助呵呵呵采纳,获得10
13秒前
小华安发布了新的文献求助10
13秒前
慕青应助虚心碧采纳,获得10
14秒前
hj完成签到 ,获得积分10
16秒前
colddie发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832