A light-weight skeleton human action recognition model with knowledge distillation for edge intelligent surveillance applications

骨架(计算机编程) 计算机科学 动作识别 人工智能 GSM演进的增强数据速率 人体骨骼 动作(物理) 模式识别(心理学) 蒸馏 机器学习 边缘检测 计算机视觉 图像(数学) 图像处理 化学 色谱法 物理 量子力学 程序设计语言 班级(哲学)
作者
Cheng Dai,Shoupeng Lu,Chuanjie Liu,Bing Guo
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:151: 111166-111166 被引量:8
标识
DOI:10.1016/j.asoc.2023.111166
摘要

Skeleton based human action recognition has evolved as one of the most important applications in multimedia IoT system. However, it requires extensive computation resource including high performance computing unites and large memory to train a deep mode with large number of parameters, which seriously limits it effectiveness and efficiency for edge intelligence multimedia IoT applications. In this paper, a knowledge distillation based light-weight deep model is proposed for skeleton human action recognition to meet the edge multimedia IoT applications. It can get competitive recognition performance in terms of learning accuracy for combination of AI model and edge surveillance equipment. On the one hand, to achieve desirable accuracy, we propose a deep pose-transition image representation method based on two-stream spatial–temporal architecture, which can mine the hidden features of color texture images in spatial and temporal domain, and fuse them for comprehensive discrimination before final classification. On the other hand, to increase the transfer learning ability to the student model on the edge device, we use tucker decomposition to weak the teacher model during knowledge transfer learning process. Finally, in order to validate the effectiveness of our proposal, we conducted extensive experiments to evaluate the proposed approach. The experimental results demonstrate that our proposal can realize deep model miniaturization to meet the requirement of edge multimedia IoT system and achieve the competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael-布莱恩特完成签到,获得积分10
1秒前
1秒前
顺心的飞飞应助不要碧莲采纳,获得10
2秒前
2秒前
2秒前
蓝桉完成签到,获得积分20
2秒前
wanci应助西米采纳,获得10
2秒前
柯米克发布了新的文献求助10
3秒前
猪猪hero应助嘴巴张大一点采纳,获得10
3秒前
李健应助怎么忘了采纳,获得100
4秒前
5秒前
lan发布了新的文献求助30
5秒前
早睡早起不秃头完成签到,获得积分10
6秒前
完美世界应助张火火采纳,获得10
7秒前
7秒前
俊秀的跳跳糖完成签到,获得积分20
8秒前
8秒前
所所应助kk采纳,获得10
8秒前
8秒前
9秒前
小二郎应助木子采纳,获得10
9秒前
10秒前
10秒前
10秒前
NexusExplorer应助忧伤的丁丁采纳,获得10
10秒前
12秒前
研友_LN3xyn完成签到,获得积分10
12秒前
jochimchan发布了新的文献求助10
14秒前
西米发布了新的文献求助10
14秒前
NexusExplorer应助kk采纳,获得10
14秒前
852应助dandelionshun采纳,获得10
15秒前
在水一方应助傲娇的觅翠采纳,获得10
15秒前
15秒前
英勇的老头完成签到,获得积分10
15秒前
Aurora.H发布了新的文献求助10
16秒前
CipherSage应助柯米克采纳,获得10
16秒前
杨沛儒发布了新的文献求助10
16秒前
ali8ba发布了新的文献求助10
18秒前
jochimchan完成签到,获得积分10
18秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152