Multi-task learning and joint refinement between camera localization and object detection

计算机科学 目标检测 人工智能 最小边界框 点云 任务(项目管理) 特征(语言学) 跳跃式监视 计算机视觉 过程(计算) 标杆管理 对象(语法) 构造(python库) 特征提取 水准点(测量) 模式识别(心理学) 图像(数学) 经济 营销 管理 程序设计语言 地理 业务 语言学 大地测量学 哲学 操作系统
作者
Junyi Wang,Yue Qi
出处
期刊:Computational Visual Media [Springer Nature]
卷期号:10 (5): 993-1011 被引量:1
标识
DOI:10.1007/s41095-022-0319-z
摘要

Abstract Visual localization and object detection both play important roles in various tasks. In many indoor application scenarios where some detected objects have fixed positions, the two techniques work closely together. However, few researchers consider these two tasks simultaneously, because of a lack of datasets and the little attention paid to such environments. In this paper, we explore multi-task network design and joint refinement of detection and localization. To address the dataset problem, we construct a medium indoor scene of an aviation exhibition hall through a semi-automatic process. The dataset provides localization and detection information, and is publicly available at https://drive.google.com/drive/folders/1U28zkuN4_I0dbzkqyIAKlAl5k9oUK0jI?usp=sharing for benchmarking localization and object detection tasks. Targeting this dataset, we have designed a multi-task network, JLDNet, based on YOLO v3, that outputs a target point cloud and object bounding boxes. For dynamic environments, the detection branch also promotes the perception of dynamics. JLDNet includes image feature learning, point feature learning, feature fusion, detection construction, and point cloud regression. Moreover, object-level bundle adjustment is used to further improve localization and detection accuracy. To test JLDNet and compare it to other methods, we have conducted experiments on 7 static scenes, our constructed dataset, and the dynamic TUM RGB-D and Bonn datasets. Our results show state-of-the-art accuracy for both tasks, and the benefit of jointly working on both tasks is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
littleJ发布了新的文献求助10
2秒前
容容容发布了新的文献求助10
2秒前
zy发布了新的文献求助10
4秒前
huanhuan完成签到,获得积分10
6秒前
无花果应助满意的代荷采纳,获得10
8秒前
9秒前
兰格格完成签到,获得积分10
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
追寻紫安应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
嗯哼应助科研通管家采纳,获得10
13秒前
13秒前
852应助王欣采纳,获得10
14秒前
An完成签到,获得积分10
14秒前
Mzhao发布了新的文献求助10
15秒前
16秒前
情怀应助佳哥闯天下采纳,获得10
16秒前
16秒前
17秒前
18秒前
Tian完成签到 ,获得积分20
18秒前
ABS发布了新的文献求助10
20秒前
经管菜鸟完成签到,获得积分20
20秒前
xqk发布了新的文献求助30
21秒前
22秒前
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264956
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331877
捐赠科研通 2575269
什么是DOI,文献DOI怎么找? 1399722
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353