Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis

医学 坏死性小肠结肠炎 新生儿重症监护室 回顾性队列研究 胎龄 儿科 重症监护 败血症 队列 警报 急诊医学 机器学习 重症监护医学 外科 怀孕 内科学 计算机科学 材料科学 生物 复合材料 遗传学
作者
M.T.H. Meeus,Charlie Beirnaert,Ludo Mahieu,Kris Laukens,Pieter Meysman,Antonius Mulder,David Van Laere
出处
期刊:The Journal of Pediatrics [Elsevier BV]
卷期号:266: 113869-113869 被引量:4
标识
DOI:10.1016/j.jpeds.2023.113869
摘要

Objective

To develop an artificial intelligence-based software system for predicting late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in infants admitted to the neonatal intensive care unit (NICU).

Study design

Single-center, retrospective cohort study, conducted in the NICU of the Antwerp University Hospital. Continuous monitoring data of 865 preterm infants born at <32 weeks gestational age, admitted to the NICU in the first week of life, were used to train an XGBoost machine learning (ML) algorithm for LOS and NEC prediction in a cross-validated setup. Afterward, the model's performance was assessed on an independent test set of 148 patients (internal validation).

Results

The ML model delivered hourly risk predictions with an overall sensitivity of 69% (142/206) for all LOS/NEC episodes and 81% (67/83) for severe LOS/NEC episodes. The model showed a median time gain of ≤10 hours (IQR, 3.1-21.0 hours), compared with historical clinical diagnosis. On the complete retrospective dataset, the ML model made 721 069 predictions, of which 9805 (1.3%) depicted a LOS/NEC probability of ≥0.15, resulting in a total alarm rate of <1 patient alarm-day per week. The model reached a similar performance on the internal validation set.

Conclusions

Artificial intelligence technology can assist clinicians in the early detection of LOS and NEC in the NICU, which potentially can result in clinical and socioeconomic benefits. Additional studies are required to quantify further the effect of combining artificial and human intelligence on patient outcomes in the NICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚幻秋白完成签到,获得积分20
1秒前
Hello应助LiQi采纳,获得10
1秒前
甜甜甜完成签到 ,获得积分10
3秒前
4秒前
ttong完成签到,获得积分10
4秒前
4秒前
虚幻秋白发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
7秒前
7秒前
bkagyin应助海孩子采纳,获得30
10秒前
10秒前
10秒前
今后应助多情邑采纳,获得10
10秒前
李尚泽完成签到,获得积分10
11秒前
麦子发布了新的文献求助10
11秒前
LiQi完成签到,获得积分10
12秒前
好好好发布了新的文献求助10
12秒前
小蘑菇应助山楂采纳,获得10
14秒前
gogoyoco发布了新的文献求助10
14秒前
Cumin完成签到 ,获得积分10
14秒前
搜集达人应助舍予有服采纳,获得10
15秒前
15秒前
15秒前
15秒前
无花果应助rrgogo采纳,获得10
16秒前
活力的小猫咪完成签到 ,获得积分10
19秒前
幸福大白发布了新的文献求助10
20秒前
完美世界应助成就茗采纳,获得10
20秒前
YJ888发布了新的文献求助10
22秒前
云雾完成签到 ,获得积分10
23秒前
无辜忆寒完成签到,获得积分10
24秒前
科研顺利完成签到,获得积分10
24秒前
25秒前
科研通AI5应助幸福大白采纳,获得30
25秒前
28秒前
30秒前
30秒前
Eatanicecube完成签到,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176