水准点(测量)
图形
计算机科学
人工神经网络
融合
特征(语言学)
模式识别(心理学)
人工智能
块(置换群论)
任务(项目管理)
药物发现
机器学习
数据挖掘
生物信息学
数学
工程类
理论计算机科学
语言学
哲学
几何学
大地测量学
系统工程
生物
地理
作者
Donglin Wang,Xiangyong Chen,Xin Bao,Kun Zhou
标识
DOI:10.1109/ntci60157.2023.10403671
摘要
It is a crucial task to predict the Drug-target affinity (DTA) in drug discovery. Recently, the application of deep learning shows a significant improvement on DTA prediction. However, most previous methods have struggled to extract the complex information of proteins. Hence, this paper introduces a novel model named AGraphDTA for DTA prediction. Specifically, AGraphDTA employs Graph Neural Network (GNN) to extract graph features of drugs and proteins. Then it employs Convo-lutional Neural Network (CNN) to extract amino acid sequence features. Additionally, a fusing block is employed to generate the fusion feature that represent the complex information of proteins. Evaluation results on benchmark datasets show that AGraphDTA demonstrates a superior performance in DTA prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI