Class-Imbalanced Graph Convolution Smoothing for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 图形 上下文图像分类 遥感 图像(数学) 计算机视觉 地质学 理论计算机科学 人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要

Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬敬完成签到,获得积分10
刚刚
追寻松发布了新的文献求助10
1秒前
3秒前
5秒前
海绵关注了科研通微信公众号
5秒前
8秒前
9秒前
10秒前
Qwe发布了新的文献求助10
11秒前
11秒前
科研通AI5应助糖炒栗子采纳,获得10
11秒前
受伤金鑫发布了新的文献求助10
12秒前
滑稽剑客发布了新的文献求助10
12秒前
13秒前
共享精神应助CHEN采纳,获得10
14秒前
rice0601发布了新的文献求助10
14秒前
Gan完成签到,获得积分10
15秒前
发嗲的飞机完成签到,获得积分20
16秒前
滑稽剑客完成签到,获得积分10
17秒前
17秒前
胡思乱想完成签到,获得积分10
19秒前
19秒前
在水一方应助落日余晖采纳,获得10
22秒前
22秒前
23秒前
受伤金鑫完成签到,获得积分10
24秒前
疯狂的虔完成签到,获得积分10
24秒前
germini99完成签到,获得积分10
24秒前
英姑应助追寻松采纳,获得10
28秒前
乐观思萱发布了新的文献求助10
28秒前
灵巧灵槐发布了新的文献求助20
30秒前
量子星尘发布了新的文献求助10
31秒前
Sj泽发布了新的文献求助10
31秒前
31秒前
WW完成签到,获得积分10
32秒前
33秒前
36秒前
ZhanG发布了新的文献求助10
37秒前
37秒前
Cindy发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971541
求助须知:如何正确求助?哪些是违规求助? 3516239
关于积分的说明 11181643
捐赠科研通 3251428
什么是DOI,文献DOI怎么找? 1795874
邀请新用户注册赠送积分活动 876110
科研通“疑难数据库(出版商)”最低求助积分说明 805245