Class-Imbalanced Graph Convolution Smoothing for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 图形 上下文图像分类 遥感 图像(数学) 计算机视觉 地质学 理论计算机科学 人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要

Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得30
刚刚
大模型应助科研通管家采纳,获得30
刚刚
隐形曼青应助科研通管家采纳,获得30
刚刚
思源应助婷婷的大宝剑采纳,获得10
刚刚
刚刚
Lucas应助科研鼠采纳,获得10
2秒前
温可可完成签到,获得积分10
2秒前
斯文败类应助小石采纳,获得10
2秒前
苦学僧发布了新的文献求助10
2秒前
万能图书馆应助穆仰采纳,获得10
2秒前
muyu完成签到,获得积分10
4秒前
4秒前
莫莫完成签到 ,获得积分10
4秒前
zsg完成签到,获得积分10
5秒前
Stella应助bubble采纳,获得10
8秒前
8秒前
9秒前
9秒前
BowieHuang应助我只吃一碗采纳,获得10
9秒前
FashionBoy应助摩尔曼斯克港采纳,获得10
10秒前
10秒前
好运来发布了新的文献求助10
10秒前
11秒前
11秒前
柚子发布了新的文献求助10
11秒前
dongdongqiang完成签到,获得积分0
12秒前
无无聊了吗完成签到 ,获得积分10
12秒前
12秒前
天天快乐应助Abc采纳,获得10
12秒前
朱元发完成签到,获得积分10
13秒前
酷酷白曼发布了新的文献求助30
13秒前
13秒前
13秒前
CodeCraft应助LHT采纳,获得10
14秒前
见景风完成签到,获得积分10
14秒前
雨落关注了科研通微信公众号
15秒前
老福贵儿应助李栗子采纳,获得10
17秒前
老福贵儿应助李栗子采纳,获得10
17秒前
自由思枫发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396