亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Class-Imbalanced Graph Convolution Smoothing for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 图形 上下文图像分类 遥感 图像(数学) 计算机视觉 地质学 理论计算机科学 人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要

Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科目三应助rrrred采纳,获得10
9秒前
顾矜应助小程同学采纳,获得10
11秒前
量子星尘发布了新的文献求助10
15秒前
东方天奇完成签到 ,获得积分10
20秒前
21秒前
小程同学发布了新的文献求助10
24秒前
33秒前
完美世界应助南宫连虎采纳,获得10
34秒前
39秒前
42秒前
呼啦呼啦完成签到 ,获得积分10
49秒前
52秒前
Jasper应助科研通管家采纳,获得10
52秒前
FashionBoy应助科研通管家采纳,获得10
52秒前
上官若男应助科研通管家采纳,获得10
52秒前
脑洞疼应助科研通管家采纳,获得10
52秒前
安静的叫兽完成签到,获得积分10
56秒前
1分钟前
顺利道消完成签到,获得积分10
1分钟前
wu8577完成签到 ,获得积分10
1分钟前
1分钟前
smile发布了新的文献求助10
1分钟前
YJL完成签到 ,获得积分10
1分钟前
rrrred发布了新的文献求助10
1分钟前
回眸完成签到 ,获得积分10
1分钟前
Duduk完成签到 ,获得积分10
1分钟前
1分钟前
rrrred完成签到,获得积分10
1分钟前
南宫连虎发布了新的文献求助10
1分钟前
传奇3应助cc采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
longh发布了新的文献求助20
1分钟前
cc发布了新的文献求助10
1分钟前
aa发布了新的文献求助10
1分钟前
lucky完成签到 ,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204542
捐赠科研通 3257350
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613