Class-Imbalanced Graph Convolution Smoothing for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 图形 上下文图像分类 遥感 图像(数学) 计算机视觉 地质学 理论计算机科学 人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要

Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Menta1y完成签到,获得积分10
刚刚
czzlancer完成签到,获得积分10
1秒前
汶溢完成签到,获得积分10
1秒前
xsss完成签到,获得积分10
2秒前
TAN完成签到,获得积分10
2秒前
通通通发布了新的文献求助10
3秒前
liudw完成签到,获得积分10
3秒前
丹丹子完成签到 ,获得积分10
4秒前
时光完成签到,获得积分10
4秒前
5秒前
充电宝应助vsvsgo采纳,获得10
7秒前
123完成签到 ,获得积分10
9秒前
Ammr完成签到 ,获得积分10
9秒前
无限的依波完成签到,获得积分10
9秒前
姽婳wy发布了新的文献求助10
10秒前
lemon完成签到,获得积分10
10秒前
传奇3应助duckspy采纳,获得30
11秒前
陈木木完成签到,获得积分10
12秒前
可可西里完成签到,获得积分10
13秒前
奋斗蜗牛完成签到,获得积分10
13秒前
CipherSage应助眼睛大的擎苍采纳,获得10
13秒前
打打应助小小酥采纳,获得10
14秒前
fox完成签到 ,获得积分10
14秒前
僦是卜够完成签到 ,获得积分10
15秒前
小马甲应助嘉梦采纳,获得10
18秒前
qiqi完成签到,获得积分10
19秒前
19秒前
科研乞丐应助Jerry采纳,获得20
20秒前
vsvsgo发布了新的文献求助10
22秒前
Jeffrey完成签到,获得积分10
23秒前
明理采珊完成签到,获得积分10
23秒前
lll发布了新的文献求助10
23秒前
vsvsgo发布了新的文献求助10
26秒前
慎之完成签到 ,获得积分10
26秒前
我是微风完成签到,获得积分10
26秒前
传奇3应助木子采纳,获得30
28秒前
vsvsgo发布了新的文献求助10
30秒前
feitian201861完成签到,获得积分10
30秒前
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022