Class-Imbalanced Graph Convolution Smoothing for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 图形 上下文图像分类 遥感 图像(数学) 计算机视觉 地质学 理论计算机科学 人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要

Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
where完成签到,获得积分10
2秒前
taotao完成签到,获得积分10
2秒前
3秒前
Lucas应助Owen采纳,获得10
4秒前
AIKaikai发布了新的文献求助10
4秒前
4秒前
5秒前
xxp发布了新的文献求助10
5秒前
FashionBoy应助jundading采纳,获得10
6秒前
单薄涵梅发布了新的文献求助10
6秒前
还行吧完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
dzx发布了新的文献求助10
8秒前
等等关注了科研通微信公众号
9秒前
tracy_slh完成签到 ,获得积分10
9秒前
10秒前
甜甜问儿完成签到,获得积分10
11秒前
joyliu完成签到,获得积分10
11秒前
Mercury发布了新的文献求助10
12秒前
12秒前
12秒前
xxxgoldxsx完成签到,获得积分10
13秒前
伶俐向薇完成签到,获得积分10
14秒前
甜甜问儿发布了新的文献求助10
15秒前
16秒前
Owen应助单薄涵梅采纳,获得10
20秒前
xxp完成签到,获得积分20
20秒前
20秒前
22秒前
劲秉应助科研小勇士采纳,获得30
22秒前
Sweger发布了新的文献求助10
22秒前
三人行完成签到,获得积分10
23秒前
23秒前
24秒前
零零柒完成签到 ,获得积分10
25秒前
jundading发布了新的文献求助10
25秒前
28秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212106
求助须知:如何正确求助?哪些是违规求助? 2860906
关于积分的说明 8126737
捐赠科研通 2526835
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615571