高光谱成像
平滑的
计算机科学
卷积(计算机科学)
人工智能
模式识别(心理学)
图形
上下文图像分类
遥感
图像(数学)
计算机视觉
地质学
理论计算机科学
人工神经网络
作者
Yun Ding,Yanwen Chong,Shaoming Pan,Chun-Hou Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-18
被引量:4
标识
DOI:10.1109/tgrs.2024.3372497
摘要
Graph convolutional networks (GCNs)-based methods for hyperspectral image (HSI) classification have received more attention due to its flexibility in information aggregation. However, most existing GCN-based methods in HSI community rely on capturing fixed K-hops neighbors for feature information aggregation, which ignores the inherent imbalance in class distributions and fails to achieve optimal feature smoothing through graph convolution operator. It is unreasonable to apply fixed K-hops strategy for feature smoothing in imbalanced classes, as class regions with rich contextual information and those with poor contextual information require to capture different hops neighbors to achieve the optimal feature smoothing. To address this issue, this article proposes a novel approach called class-imbalanced graph convolution smoothing (CIGCS) for HSI classification, which achieves adaptive feature smoothing for imbalanced class regions. Firstly, we construct a semantic block-diagonal graph structure that describes imbalanced semantic class regions by considering label connectivity and spectral Laplacian regularizer. Secondly, we develop the class-imbalanced graph convolution smoothing technique to adaptively aggregate neighbor information for imbalanced class regions based on the decreasing Euclidean distance of samples within each bock-diagonal structure from the perspective of over-smoothing. The choice of adaptive neighbors can be guaranteed by a theoretical upper bound. Finally, the obtained optimal smoothed features are fed into the logistic regression to achieve good classification results. The proposed CIGCS method is evaluated on three real HSI data sets to demonstrate its superiority compared to some popular GCN-based methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI