The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework

激光雷达 强化学习 机器人 避障 运动规划 计算机科学 障碍物 人工智能 避碰 路径(计算) 计算机视觉 点(几何) 弹道 模拟 碰撞 移动机器人 遥感 地理 数学 物理 计算机安全 几何学 考古 天文 程序设计语言
作者
Kabirat Olayemi,Mien Van,Seán McLoone,Stephen McIlvanna,Yuzhu Sun,J. D. Close,Nhat Minh Nguyen
出处
期刊:Sensors [MDPI AG]
卷期号:23 (24): 9732-9732 被引量:1
标识
DOI:10.3390/s23249732
摘要

Over the years, deep reinforcement learning (DRL) has shown great potential in mapless autonomous robot navigation and path planning. These DRL methods rely on robots equipped with different light detection and range (LiDAR) sensors with a wide field of view (FOV) configuration to perceive their environment. These types of LiDAR sensors are expensive and are not suitable for small-scale applications. In this paper, we address the performance effect of the LiDAR sensor configuration in DRL models. Our focus is on avoiding static obstacles ahead. We propose a novel approach that determines an initial FOV by calculating an angle of view using the sensor's width and the minimum safe distance required between the robot and the obstacle. The beams returned within the FOV, the robot's velocities, the robot's orientation to the goal point, and the distance to the goal point are used as the input state to generate new velocity values as the output action of the DRL. The cost function of collision avoidance and path planning is defined as the reward of the DRL model. To verify the performance of the proposed method, we adjusted the proposed FOV by ±10° giving a narrower and wider FOV. These new FOVs are trained to obtain collision avoidance and path planning DRL models to validate the proposed method. Our experimental setup shows that the LiDAR configuration with the computed angle of view as its FOV performs best with a success rate of 98% and a lower time complexity of 0.25 m/s. Additionally, using a Husky Robot, we demonstrate the model's good performance and applicability in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净寻冬应助Liens采纳,获得10
1秒前
上官若男应助Twonej采纳,获得300
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
三石完成签到,获得积分10
2秒前
BeBrave1028完成签到,获得积分10
2秒前
随缘发布了新的文献求助10
2秒前
PARA关注了科研通微信公众号
2秒前
2秒前
bingo发布了新的文献求助10
2秒前
3秒前
Shoujiang发布了新的文献求助10
3秒前
4秒前
GM发布了新的文献求助10
4秒前
4秒前
liang发布了新的文献求助10
4秒前
4秒前
充电宝应助pikopiko采纳,获得30
4秒前
斯文败类应助Hong采纳,获得10
4秒前
Ting222完成签到,获得积分10
5秒前
无花果应助十年小橘采纳,获得10
5秒前
yanziwu94发布了新的文献求助10
6秒前
7秒前
善学以致用应助李春阳采纳,获得10
7秒前
7秒前
zm发布了新的文献求助10
7秒前
7秒前
8秒前
wang完成签到,获得积分10
8秒前
456完成签到,获得积分10
8秒前
简单白梦完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
andy完成签到,获得积分10
9秒前
10秒前
10秒前
快乐芯完成签到,获得积分10
10秒前
任夏发布了新的文献求助10
11秒前
赘婿应助呆呆采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603