The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework

激光雷达 强化学习 机器人 避障 运动规划 计算机科学 障碍物 人工智能 避碰 路径(计算) 计算机视觉 点(几何) 弹道 模拟 碰撞 移动机器人 遥感 地理 数学 物理 计算机安全 几何学 考古 天文 程序设计语言
作者
Kabirat Olayemi,Mien Van,Seán McLoone,Stephen McIlvanna,Yuzhu Sun,J. D. Close,Nhat Minh Nguyen
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (24): 9732-9732 被引量:1
标识
DOI:10.3390/s23249732
摘要

Over the years, deep reinforcement learning (DRL) has shown great potential in mapless autonomous robot navigation and path planning. These DRL methods rely on robots equipped with different light detection and range (LiDAR) sensors with a wide field of view (FOV) configuration to perceive their environment. These types of LiDAR sensors are expensive and are not suitable for small-scale applications. In this paper, we address the performance effect of the LiDAR sensor configuration in DRL models. Our focus is on avoiding static obstacles ahead. We propose a novel approach that determines an initial FOV by calculating an angle of view using the sensor's width and the minimum safe distance required between the robot and the obstacle. The beams returned within the FOV, the robot's velocities, the robot's orientation to the goal point, and the distance to the goal point are used as the input state to generate new velocity values as the output action of the DRL. The cost function of collision avoidance and path planning is defined as the reward of the DRL model. To verify the performance of the proposed method, we adjusted the proposed FOV by ±10° giving a narrower and wider FOV. These new FOVs are trained to obtain collision avoidance and path planning DRL models to validate the proposed method. Our experimental setup shows that the LiDAR configuration with the computed angle of view as its FOV performs best with a success rate of 98% and a lower time complexity of 0.25 m/s. Additionally, using a Husky Robot, we demonstrate the model's good performance and applicability in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助ZSQ采纳,获得10
1秒前
华仔应助mint-WANG采纳,获得10
1秒前
2秒前
不会做科研完成签到,获得积分10
2秒前
2秒前
高大草莓发布了新的文献求助10
2秒前
yyfsummer完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
半拉馒头完成签到,获得积分20
6秒前
殊量完成签到,获得积分10
6秒前
Orange应助wangfeng007采纳,获得10
6秒前
天很蓝发布了新的文献求助10
7秒前
7秒前
7秒前
旋律发布了新的文献求助10
7秒前
田様应助Mid采纳,获得10
8秒前
鲁班七号发布了新的文献求助10
8秒前
愉快数据线完成签到 ,获得积分10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
倪倪发布了新的文献求助10
8秒前
8秒前
8秒前
asdfg完成签到,获得积分10
9秒前
丘比特应助shudder采纳,获得30
9秒前
花开富贵发布了新的文献求助20
9秒前
9秒前
9秒前
冯科完成签到,获得积分10
9秒前
陶醉的笑槐完成签到,获得积分10
9秒前
bon发布了新的文献求助10
10秒前
flipped完成签到,获得积分10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813