The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework

激光雷达 强化学习 机器人 避障 运动规划 计算机科学 障碍物 人工智能 避碰 路径(计算) 计算机视觉 点(几何) 弹道 模拟 碰撞 移动机器人 遥感 地理 数学 物理 计算机安全 几何学 考古 天文 程序设计语言
作者
Kabirat Olayemi,Mien Van,Seán McLoone,Stephen McIlvanna,Yuzhu Sun,J. D. Close,Nhat Minh Nguyen
出处
期刊:Sensors [MDPI AG]
卷期号:23 (24): 9732-9732 被引量:1
标识
DOI:10.3390/s23249732
摘要

Over the years, deep reinforcement learning (DRL) has shown great potential in mapless autonomous robot navigation and path planning. These DRL methods rely on robots equipped with different light detection and range (LiDAR) sensors with a wide field of view (FOV) configuration to perceive their environment. These types of LiDAR sensors are expensive and are not suitable for small-scale applications. In this paper, we address the performance effect of the LiDAR sensor configuration in DRL models. Our focus is on avoiding static obstacles ahead. We propose a novel approach that determines an initial FOV by calculating an angle of view using the sensor's width and the minimum safe distance required between the robot and the obstacle. The beams returned within the FOV, the robot's velocities, the robot's orientation to the goal point, and the distance to the goal point are used as the input state to generate new velocity values as the output action of the DRL. The cost function of collision avoidance and path planning is defined as the reward of the DRL model. To verify the performance of the proposed method, we adjusted the proposed FOV by ±10° giving a narrower and wider FOV. These new FOVs are trained to obtain collision avoidance and path planning DRL models to validate the proposed method. Our experimental setup shows that the LiDAR configuration with the computed angle of view as its FOV performs best with a success rate of 98% and a lower time complexity of 0.25 m/s. Additionally, using a Husky Robot, we demonstrate the model's good performance and applicability in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jpc完成签到,获得积分10
刚刚
俊逸的无心完成签到,获得积分20
刚刚
刚刚
小青椒应助盷昀采纳,获得50
1秒前
1秒前
糜厉完成签到,获得积分10
1秒前
傲娇以寒完成签到 ,获得积分10
2秒前
2秒前
绿L发布了新的文献求助10
2秒前
2秒前
2秒前
小辰发布了新的文献求助10
2秒前
iNk应助帅气善斓采纳,获得20
2秒前
可爱的函函应助花样年华采纳,获得10
3秒前
科研小菜鸡完成签到,获得积分10
3秒前
波西米亚完成签到,获得积分10
3秒前
3秒前
科研通AI6应助荒林采纳,获得10
3秒前
felix完成签到,获得积分10
3秒前
半农发布了新的文献求助10
3秒前
罗wq发布了新的文献求助10
4秒前
怕黑雨竹完成签到,获得积分10
4秒前
沉静从蓉发布了新的文献求助10
4秒前
4秒前
5秒前
默默蘑菇完成签到,获得积分10
5秒前
邓炎林发布了新的文献求助10
5秒前
5秒前
阿浩完成签到,获得积分10
6秒前
蒙蒙完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836