已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework

激光雷达 强化学习 机器人 避障 运动规划 计算机科学 障碍物 人工智能 避碰 路径(计算) 计算机视觉 点(几何) 弹道 模拟 碰撞 移动机器人 遥感 地理 数学 物理 天文 考古 程序设计语言 计算机安全 几何学
作者
Kabirat Olayemi,Mien Van,Seán McLoone,Stephen McIlvanna,Yuzhu Sun,J. D. Close,Nhat Minh Nguyen
出处
期刊:Sensors [MDPI AG]
卷期号:23 (24): 9732-9732 被引量:1
标识
DOI:10.3390/s23249732
摘要

Over the years, deep reinforcement learning (DRL) has shown great potential in mapless autonomous robot navigation and path planning. These DRL methods rely on robots equipped with different light detection and range (LiDAR) sensors with a wide field of view (FOV) configuration to perceive their environment. These types of LiDAR sensors are expensive and are not suitable for small-scale applications. In this paper, we address the performance effect of the LiDAR sensor configuration in DRL models. Our focus is on avoiding static obstacles ahead. We propose a novel approach that determines an initial FOV by calculating an angle of view using the sensor's width and the minimum safe distance required between the robot and the obstacle. The beams returned within the FOV, the robot's velocities, the robot's orientation to the goal point, and the distance to the goal point are used as the input state to generate new velocity values as the output action of the DRL. The cost function of collision avoidance and path planning is defined as the reward of the DRL model. To verify the performance of the proposed method, we adjusted the proposed FOV by ±10° giving a narrower and wider FOV. These new FOVs are trained to obtain collision avoidance and path planning DRL models to validate the proposed method. Our experimental setup shows that the LiDAR configuration with the computed angle of view as its FOV performs best with a success rate of 98% and a lower time complexity of 0.25 m/s. Additionally, using a Husky Robot, we demonstrate the model's good performance and applicability in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123zzzzzz发布了新的文献求助10
1秒前
希望天下0贩的0应助扶桑采纳,获得10
1秒前
2秒前
3秒前
55155255完成签到,获得积分10
5秒前
6秒前
搜集达人应助温暖的夏波采纳,获得10
6秒前
jzx发布了新的文献求助10
7秒前
8秒前
andurance完成签到,获得积分10
9秒前
bkagyin应助卡卡西采纳,获得10
9秒前
木瑾发布了新的文献求助10
9秒前
活力怜雪完成签到 ,获得积分10
10秒前
10秒前
Sapana发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
15秒前
道阻且长发布了新的文献求助10
16秒前
coralline发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助ZHI采纳,获得10
16秒前
17秒前
17秒前
在水一方应助Rosemary采纳,获得10
17秒前
17秒前
mob完成签到,获得积分10
17秒前
17秒前
脑洞疼应助现代尔芙采纳,获得10
18秒前
gmy发布了新的文献求助10
21秒前
22秒前
23秒前
靴子发布了新的文献求助10
24秒前
动听不二完成签到,获得积分10
27秒前
隐形曼青应助等待的香魔采纳,获得10
27秒前
飘逸的凝荷完成签到,获得积分10
28秒前
28秒前
28秒前
Firefly完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469659
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336729
捐赠科研通 4499533
什么是DOI,文献DOI怎么找? 2465123
邀请新用户注册赠送积分活动 1453678
关于科研通互助平台的介绍 1428175