Revealing Unusual Bandgap Shifts with Temperature and Bandgap Renormalization Effect in Phase‐Stabilized Metal Halide Perovskite Thin Films

材料科学 带隙 光致发光 钙钛矿(结构) 薄膜 激子 蓝移 光电子学 光伏 卤化物 直接和间接带隙 凝聚态物理 纳米技术 结晶学 无机化学 化学 物理 光伏系统 生物 生态学
作者
Haochen Zhang,Zhixuan Bi,Zehua Zhai,Han Gao,Yuwei Liu,Meiling Jin,Meng Ye,Xuanzhang Li,Haowen Liu,Yuegang Zhang,Xiang Li,Hairen Tan,Yong Xu,Luyi Yang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (9) 被引量:46
标识
DOI:10.1002/adfm.202302214
摘要

Abstract Hybrid organic–inorganic metal halide perovskites are emerging materials in photovoltaics, whose bandgap is one of the most crucial parameters governing their light‐harvesting performance. This work presents the temperature and photocarrier density dependence of the bandgap in two phase‐stabilized perovskite thin films (MA 0.3 FA 0.7 PbI 3 and MA 0.3 FA 0.7 Pb 0.5 Sn 0.5 I 3 ) using photoluminescence and absorption spectroscopy. Contrasting bandgap shifts with temperature are observed between the two perovskites. Using X‐ray diffraction and in situ high‐pressure photoluminescence spectroscopy, it is shown that thermal expansion plays only a minor role in the large bandgap blueshift, which is attributed to the enhanced structural stability of the samples. The first‐principles calculations further demonstrate the significant impact of thermally induced lattice distortions on the bandgap widening. It is proposed that the anomalous trends are caused by the competition between static and dynamic distortions. Additionally, both the bandgap renormalization and band‐filling effects are directly observed for the first time in fluence‐dependent photoluminescence measurements and are employed to estimate the exciton effective mass. The results provide new insights into the basic understanding of thermal and charge‐accumulation effects on the band structure of hybrid perovskite thin films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Camille发布了新的文献求助10
1秒前
铁钩子发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
Angel发布了新的文献求助10
4秒前
5秒前
醉熏的灵发布了新的文献求助10
6秒前
科研通AI6应助热心犀牛采纳,获得10
6秒前
渔婆发布了新的文献求助10
6秒前
6秒前
科研通AI6应助www采纳,获得30
6秒前
求索发布了新的文献求助10
7秒前
科研通AI2S应助Taozhi采纳,获得10
8秒前
8秒前
orixero应助忆韵采纳,获得10
8秒前
乐乐应助小李爱查文献采纳,获得10
9秒前
lang完成签到,获得积分10
10秒前
打打应助美好斓采纳,获得10
10秒前
11秒前
狄百招发布了新的文献求助10
13秒前
13秒前
Rainfly_Xu完成签到,获得积分10
13秒前
14秒前
沉默钢笔发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
天天快乐应助wei采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
高兴语薇完成签到 ,获得积分10
17秒前
科研通AI2S应助申雪狐采纳,获得10
18秒前
妍yan发布了新的文献求助10
18秒前
18秒前
18秒前
柔弱的纸鹤完成签到,获得积分10
19秒前
xh完成签到 ,获得积分10
19秒前
Tink完成签到,获得积分0
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655969
求助须知:如何正确求助?哪些是违规求助? 4801147
关于积分的说明 15074424
捐赠科研通 4814371
什么是DOI,文献DOI怎么找? 2575623
邀请新用户注册赠送积分活动 1531032
关于科研通互助平台的介绍 1489644