Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder

扁桃形结构 海马体 重性抑郁障碍 心理学 海马结构 神经科学 内科学 医学
作者
Lianqing Zhang,Xinyue Hu,Yongbo Hu,Mengyue Tang,Hui Qiu,Ziyu Zhu,Yingxue Gao,Hailong Li,Weihong Kuang,Weidong Ji
标识
DOI:10.1093/psyrad/kkac023
摘要

Abstract Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus–amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus–amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus–amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Johnny发布了新的文献求助10
1秒前
2秒前
WHH完成签到,获得积分20
2秒前
忧伤的大壮完成签到,获得积分10
3秒前
思源应助qwwer采纳,获得10
3秒前
踏实绮露完成签到 ,获得积分10
3秒前
minkuuuuuuu应助lvzhechen采纳,获得10
4秒前
4秒前
生鱼安乐完成签到,获得积分10
4秒前
4秒前
Courageous发布了新的文献求助10
5秒前
在水一方应助dawn采纳,获得10
6秒前
顾矜应助jiangsu20采纳,获得10
6秒前
充电宝应助陈冲采纳,获得10
7秒前
Yan发布了新的文献求助10
7秒前
Dong完成签到,获得积分10
7秒前
优秀荔枝完成签到,获得积分10
8秒前
Hua完成签到 ,获得积分10
10秒前
bkagyin应助WHH采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
李爱国应助xpeng采纳,获得10
12秒前
12秒前
Akim应助专一的摩托车采纳,获得10
12秒前
脑洞疼应助李四采纳,获得10
13秒前
13秒前
jstss完成签到,获得积分20
13秒前
研友_VZG7GZ应助陌上之心采纳,获得10
15秒前
15秒前
yuwan完成签到,获得积分10
16秒前
内向翰完成签到,获得积分10
16秒前
嗯哼发布了新的文献求助10
17秒前
666发布了新的文献求助10
17秒前
17秒前
在水一方应助小白采纳,获得10
17秒前
Oden完成签到,获得积分10
18秒前
qwwer发布了新的文献求助10
18秒前
19秒前
情怀应助失眠的以蓝采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913