Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder

扁桃形结构 海马体 重性抑郁障碍 心理学 海马结构 神经科学 内科学 医学
作者
Lianqing Zhang,Xinyue Hu,Yongbo Hu,Mengyue Tang,Hui Qiu,Ziyu Zhu,Yingxue Gao,Hailong Li,Weihong Kuang,Weidong Ji
标识
DOI:10.1093/psyrad/kkac023
摘要

Abstract Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus–amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus–amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus–amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助言小采纳,获得10
1秒前
Chen发布了新的文献求助10
1秒前
lql233完成签到,获得积分20
1秒前
雪白问兰完成签到 ,获得积分10
1秒前
1秒前
魅力蜗牛完成签到,获得积分10
1秒前
1秒前
upup小李完成签到 ,获得积分10
2秒前
手帕很忙完成签到,获得积分10
2秒前
害羞含雁发布了新的文献求助10
2秒前
2秒前
zp完成签到 ,获得积分10
2秒前
ren发布了新的文献求助10
3秒前
Lucas应助踏实的小海豚采纳,获得10
3秒前
Lucas应助2go采纳,获得10
3秒前
Jasper应助日月山河永在采纳,获得10
4秒前
4秒前
5秒前
5秒前
慕青应助没有名称采纳,获得10
5秒前
HEIKU应助聪慧的机器猫采纳,获得10
5秒前
拼搏翠桃发布了新的文献求助10
6秒前
8个老登发布了新的文献求助10
7秒前
7秒前
hhy完成签到,获得积分10
7秒前
孙一雯发布了新的文献求助30
8秒前
8秒前
Xxxnnian完成签到,获得积分20
9秒前
fancy发布了新的文献求助10
9秒前
apple完成签到,获得积分10
9秒前
9秒前
oldlee发布了新的文献求助10
10秒前
斜杠武发布了新的文献求助10
10秒前
毕业就好发布了新的文献求助10
10秒前
wusanlinshi完成签到,获得积分20
11秒前
娜行发布了新的文献求助10
11秒前
大雄完成签到,获得积分10
11秒前
kai发布了新的文献求助10
12秒前
科研通AI5应助老西瓜采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672