Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder

扁桃形结构 海马体 重性抑郁障碍 心理学 海马结构 神经科学 内科学 医学
作者
Lianqing Zhang,Xinyue Hu,Yongbo Hu,Mengyue Tang,Hui Qiu,Ziyu Zhu,Yingxue Gao,Hailong Li,Weihong Kuang,Weidong Ji
标识
DOI:10.1093/psyrad/kkac023
摘要

Abstract Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus–amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus–amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus–amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助无名采纳,获得30
1秒前
玲儿发布了新的文献求助10
1秒前
Luffy关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
丘比特应助xu采纳,获得50
3秒前
深情安青应助立景采纳,获得10
3秒前
无名的人完成签到 ,获得积分10
3秒前
FashionBoy应助略略略采纳,获得10
4秒前
婉玉完成签到,获得积分10
5秒前
5秒前
5秒前
lCM完成签到,获得积分10
5秒前
6秒前
小钟小钟完成签到,获得积分10
7秒前
7秒前
合适猫咪完成签到,获得积分10
7秒前
8秒前
玲儿完成签到,获得积分10
8秒前
HigherPing发布了新的文献求助20
8秒前
8秒前
9秒前
10秒前
10秒前
Dorren发布了新的文献求助10
10秒前
Ferry完成签到,获得积分10
11秒前
曾高高发布了新的文献求助10
11秒前
muyaa发布了新的文献求助10
12秒前
tang完成签到,获得积分10
12秒前
TIAn完成签到,获得积分10
13秒前
13秒前
张朔发布了新的文献求助10
13秒前
Ferry发布了新的文献求助10
15秒前
HP完成签到,获得积分10
16秒前
16秒前
范炎炎发布了新的文献求助200
17秒前
积极山雁完成签到,获得积分10
18秒前
韩_x发布了新的文献求助10
19秒前
张朔完成签到,获得积分20
19秒前
老实新筠发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553