Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder

扁桃形结构 海马体 重性抑郁障碍 心理学 海马结构 神经科学 内科学 医学
作者
Lianqing Zhang,Xinyue Hu,Yongbo Hu,Mengyue Tang,Hui Qiu,Ziyu Zhu,Yingxue Gao,Hailong Li,Weihong Kuang,Weidong Ji
标识
DOI:10.1093/psyrad/kkac023
摘要

Abstract Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus–amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus–amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus–amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊a完成签到,获得积分10
刚刚
Baneyhua发布了新的文献求助10
1秒前
1秒前
2秒前
fmy完成签到,获得积分10
3秒前
桐桐应助君君采纳,获得30
3秒前
阿刁发布了新的文献求助10
4秒前
Cbbaby完成签到,获得积分10
5秒前
Junjie发布了新的文献求助10
6秒前
英俊的铭应助李某采纳,获得10
6秒前
JamesPei应助只想发SCI采纳,获得10
8秒前
阿刁完成签到,获得积分10
9秒前
aaaaa完成签到,获得积分10
9秒前
Zyl完成签到 ,获得积分10
12秒前
金枪鱼子发布了新的文献求助30
13秒前
wanci应助无无采纳,获得10
14秒前
14秒前
linkman发布了新的文献求助10
14秒前
14秒前
14秒前
Junjie完成签到,获得积分10
15秒前
15秒前
星辰大海应助科研小白鼠采纳,获得30
16秒前
情怀应助qq16采纳,获得20
16秒前
冷先森EPC完成签到,获得积分10
17秒前
jhbdhs发布了新的文献求助30
18秒前
boyue发布了新的文献求助10
20秒前
白色风车发布了新的文献求助10
21秒前
李某发布了新的文献求助10
21秒前
笑一笑完成签到 ,获得积分10
21秒前
halona发布了新的文献求助10
21秒前
眼睛大雨筠应助155采纳,获得20
22秒前
丘比特应助橘酥酥呀采纳,获得10
22秒前
22秒前
Suvensum完成签到,获得积分10
24秒前
24秒前
万能图书馆应助令狐擎宇采纳,获得10
24秒前
英姑应助YiWei采纳,获得10
25秒前
JayWu完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565