MaeFE: Masked Autoencoders Family of Electrocardiogram for Self-Supervised Pretraining and Transfer Learning

自编码 人工智能 计算机科学 学习迁移 深度学习 模式识别(心理学) 特征学习 分类器(UML) 编码器 语音识别 机器学习 操作系统
作者
Huaicheng Zhang,Wenhan Liu,Jiguang Shi,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:1
标识
DOI:10.1109/tim.2022.3228267
摘要

Electrocardiogram (ECG) is a universal diagnostic tool for heart disease, which can provide data for deep learning. The scarcity of labeled data is a major challenge for medical artificial intelligence diagnosis. Acquiring labeled medical data is time-consuming and high-cost because medical specialists are needed. As a kind of generative self-supervised learning method, a masked autoencoder (MAE) is capable to solve these problems. MAE family of ECG (MaeFE) is proposed in this article. Considering the temporal and spatial features of ECG, MaeFE contains three customized masking modes, including masked time autoencoder (MTAE), masked lead autoencoder (MLAE), and masked lead and time autoencoder (MLTAE). MTAE and MLAE pay greater attention to temporal features and spatial features, respectively. MLTAE is a multihead architecture that combines MTAE and MLAE. In the pretraining stage, ECG signals from the pretrain dataset are divided into patches and partially masked. The encoder transfers unmasked patches to tokens and the decoder reconstructs masked ones. In downstream tasks, the pretrained encoder is utilized as a classifier, which is arrhythmia classification performed in the downstream dataset. The process is the so-called transfer learning. MaeFE outperforms the state-of-the-art self-supervised learning methods, SimCLR, MoCo, CLOCS, and MaskUNet in downstream tasks. MTAE has the best comprehensive performance. Compared to contrastive learning models, MTAE achieves at least a 5.18%, 11.80%, and 3.23% increase in accuracy (Acc), Macro-F1, and area under the curve (AUC), respectively, using the linear probe. It also outperforms other models at 8.99% in Acc, 20.18% in Macro-F1, and 7.13% in AUC using fine-tuning. As another downstream task, experiments on the multilabel classification of arrhythmia are also conducted, which reflects the excellent generalization performance of MaeFE. Depending on experimental results, MaeFE turns out to be efficient and robust in downstream tasks. Overcoming the scarcity of labeled data, MaeFE is better than other self-supervised learning methods and achieves satisfying performance. Consequently, the algorithm in this article is on track of playing a major role in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡晨思艺完成签到,获得积分10
刚刚
1秒前
SSS完成签到,获得积分10
1秒前
1秒前
英俊的铭应助gugu采纳,获得20
1秒前
1秒前
电闪完成签到,获得积分10
1秒前
淡然冬灵发布了新的文献求助10
1秒前
dyuguo3完成签到 ,获得积分10
1秒前
自信石头完成签到,获得积分10
1秒前
2秒前
北冥有鱼完成签到,获得积分10
2秒前
研友_VZG7GZ应助风雅采纳,获得10
2秒前
2秒前
ab完成签到,获得积分10
2秒前
王王完成签到 ,获得积分10
2秒前
2秒前
怡然安南完成签到 ,获得积分10
2秒前
司空骁发布了新的文献求助10
2秒前
limin完成签到,获得积分10
2秒前
3秒前
Zx_1993应助狂野小鸭子采纳,获得30
3秒前
隽峯发布了新的文献求助10
3秒前
任性的思远完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
liang2508发布了新的文献求助10
4秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348166
求助须知:如何正确求助?哪些是违规求助? 4482370
关于积分的说明 13950463
捐赠科研通 4380997
什么是DOI,文献DOI怎么找? 2407174
邀请新用户注册赠送积分活动 1399774
关于科研通互助平台的介绍 1373012