MaeFE: Masked Autoencoders Family of Electrocardiogram for Self-Supervised Pretraining and Transfer Learning

自编码 人工智能 计算机科学 学习迁移 深度学习 模式识别(心理学) 特征学习 分类器(UML) 编码器 语音识别 机器学习 操作系统
作者
Huaicheng Zhang,Wenhan Liu,Jiguang Shi,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:1
标识
DOI:10.1109/tim.2022.3228267
摘要

Electrocardiogram (ECG) is a universal diagnostic tool for heart disease, which can provide data for deep learning. The scarcity of labeled data is a major challenge for medical artificial intelligence diagnosis. Acquiring labeled medical data is time-consuming and high-cost because medical specialists are needed. As a kind of generative self-supervised learning method, a masked autoencoder (MAE) is capable to solve these problems. MAE family of ECG (MaeFE) is proposed in this article. Considering the temporal and spatial features of ECG, MaeFE contains three customized masking modes, including masked time autoencoder (MTAE), masked lead autoencoder (MLAE), and masked lead and time autoencoder (MLTAE). MTAE and MLAE pay greater attention to temporal features and spatial features, respectively. MLTAE is a multihead architecture that combines MTAE and MLAE. In the pretraining stage, ECG signals from the pretrain dataset are divided into patches and partially masked. The encoder transfers unmasked patches to tokens and the decoder reconstructs masked ones. In downstream tasks, the pretrained encoder is utilized as a classifier, which is arrhythmia classification performed in the downstream dataset. The process is the so-called transfer learning. MaeFE outperforms the state-of-the-art self-supervised learning methods, SimCLR, MoCo, CLOCS, and MaskUNet in downstream tasks. MTAE has the best comprehensive performance. Compared to contrastive learning models, MTAE achieves at least a 5.18%, 11.80%, and 3.23% increase in accuracy (Acc), Macro-F1, and area under the curve (AUC), respectively, using the linear probe. It also outperforms other models at 8.99% in Acc, 20.18% in Macro-F1, and 7.13% in AUC using fine-tuning. As another downstream task, experiments on the multilabel classification of arrhythmia are also conducted, which reflects the excellent generalization performance of MaeFE. Depending on experimental results, MaeFE turns out to be efficient and robust in downstream tasks. Overcoming the scarcity of labeled data, MaeFE is better than other self-supervised learning methods and achieves satisfying performance. Consequently, the algorithm in this article is on track of playing a major role in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
康谨完成签到 ,获得积分10
1秒前
DrugRD发布了新的文献求助10
1秒前
1秒前
憨憨医生完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助十六采纳,获得10
2秒前
2秒前
CodeCraft应助陈曦采纳,获得10
3秒前
xiaojia发布了新的文献求助10
3秒前
Allergy发布了新的文献求助10
4秒前
就好ih完成签到,获得积分10
4秒前
33发布了新的文献求助30
5秒前
CodeCraft应助清蒸鱼采纳,获得10
6秒前
6秒前
v小飞侠101发布了新的文献求助10
8秒前
闾丘明雪完成签到,获得积分10
8秒前
9秒前
淇淇完成签到,获得积分10
11秒前
闾丘明雪发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助拔丝香芋采纳,获得30
12秒前
十六发布了新的文献求助10
13秒前
14秒前
Allergy完成签到,获得积分20
15秒前
新疆彭于晏完成签到,获得积分20
16秒前
16秒前
开放飞阳完成签到 ,获得积分10
16秒前
小鱼儿发布了新的文献求助10
18秒前
18秒前
plain发布了新的文献求助10
19秒前
19秒前
科研通AI5应助ZXC采纳,获得10
20秒前
20秒前
wwl完成签到,获得积分10
21秒前
FashionBoy应助十六采纳,获得10
21秒前
念姬发布了新的文献求助10
23秒前
小二郎应助新疆彭于晏采纳,获得10
23秒前
挽风风风风完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420