MaeFE: Masked Autoencoders Family of Electrocardiogram for Self-Supervised Pretraining and Transfer Learning

自编码 人工智能 计算机科学 学习迁移 深度学习 模式识别(心理学) 特征学习 分类器(UML) 编码器 语音识别 机器学习 操作系统
作者
Huaicheng Zhang,Wenhan Liu,Jiguang Shi,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:1
标识
DOI:10.1109/tim.2022.3228267
摘要

Electrocardiogram (ECG) is a universal diagnostic tool for heart disease, which can provide data for deep learning. The scarcity of labeled data is a major challenge for medical artificial intelligence diagnosis. Acquiring labeled medical data is time-consuming and high-cost because medical specialists are needed. As a kind of generative self-supervised learning method, a masked autoencoder (MAE) is capable to solve these problems. MAE family of ECG (MaeFE) is proposed in this article. Considering the temporal and spatial features of ECG, MaeFE contains three customized masking modes, including masked time autoencoder (MTAE), masked lead autoencoder (MLAE), and masked lead and time autoencoder (MLTAE). MTAE and MLAE pay greater attention to temporal features and spatial features, respectively. MLTAE is a multihead architecture that combines MTAE and MLAE. In the pretraining stage, ECG signals from the pretrain dataset are divided into patches and partially masked. The encoder transfers unmasked patches to tokens and the decoder reconstructs masked ones. In downstream tasks, the pretrained encoder is utilized as a classifier, which is arrhythmia classification performed in the downstream dataset. The process is the so-called transfer learning. MaeFE outperforms the state-of-the-art self-supervised learning methods, SimCLR, MoCo, CLOCS, and MaskUNet in downstream tasks. MTAE has the best comprehensive performance. Compared to contrastive learning models, MTAE achieves at least a 5.18%, 11.80%, and 3.23% increase in accuracy (Acc), Macro-F1, and area under the curve (AUC), respectively, using the linear probe. It also outperforms other models at 8.99% in Acc, 20.18% in Macro-F1, and 7.13% in AUC using fine-tuning. As another downstream task, experiments on the multilabel classification of arrhythmia are also conducted, which reflects the excellent generalization performance of MaeFE. Depending on experimental results, MaeFE turns out to be efficient and robust in downstream tasks. Overcoming the scarcity of labeled data, MaeFE is better than other self-supervised learning methods and achieves satisfying performance. Consequently, the algorithm in this article is on track of playing a major role in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跨进行发布了新的文献求助10
2秒前
3秒前
快乐战神没烦恼完成签到,获得积分10
5秒前
6秒前
Lucas应助东方天奇采纳,获得10
6秒前
7秒前
CodeCraft应助孔懿轩采纳,获得10
8秒前
和平港湾发布了新的文献求助10
9秒前
Han完成签到,获得积分10
10秒前
Camellia完成签到,获得积分10
12秒前
Saven发布了新的文献求助10
12秒前
lwl完成签到,获得积分10
15秒前
勤恳的流沙完成签到,获得积分10
16秒前
18秒前
浅碎时光完成签到,获得积分10
19秒前
菲菲发布了新的文献求助10
21秒前
搜集达人应助xxh采纳,获得10
21秒前
22秒前
23秒前
弄井发布了新的文献求助10
23秒前
23秒前
mayue完成签到,获得积分10
25秒前
FashionBoy应助huqingtao采纳,获得10
25秒前
ZXY完成签到 ,获得积分10
25秒前
笑雨洗铅华关注了科研通微信公众号
25秒前
26秒前
科研通AI2S应助彩色不评采纳,获得10
26秒前
研友_VZG7GZ应助Saven采纳,获得10
26秒前
Orange应助Saven采纳,获得10
29秒前
maox1aoxin应助岳霖风采纳,获得30
30秒前
30秒前
32秒前
32秒前
学水看山发布了新的文献求助10
36秒前
风中盼易发布了新的文献求助10
39秒前
不配.应助min采纳,获得20
40秒前
40秒前
马路完成签到 ,获得积分10
42秒前
不配.应助绿兔子采纳,获得20
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946037
关于积分的说明 8527998
捐赠科研通 2621608
什么是DOI,文献DOI怎么找? 1433953
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650651