Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models

地表径流 环境科学 数据同化 水流 气候学 强迫(数学) 气候模式 水文模型 水循环 径流模型 径流曲线数 气候变化 气象学 水文学(农业) 流域 地质学 地理 生态学 海洋学 地图学 岩土工程 生物
作者
Ying Hou,Hui Guo,Yuting Yang,Wenbin Liu
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:32
标识
DOI:10.1029/2021wr031817
摘要

Abstract Recent advances in global hydrological modeling yield many global runoff data sets that are extensively used in global hydrological analyses. Here, we provide a comprehensive evaluation of simulated runoff from 21 global models, including 12 climate models from CMIP6, six global hydrological models from the Inter‐Sectoral Impact Model Inter‐Comparison Project (ISMIP2a) and three land surface models from the Global Land Data Assimilation System (GLDAS), against observed streamflow in 840 unimpaired catchments globally. Our results show that (a) no model performs consistently better in estimating runoff from all aspects, and all models tend to perform better in more humid regions and non‐cold areas; (b) the interannual runoff variability is well represented in ISIMIP2a and GLDAS models, and no model performs satisfactorily in capturing the annual runoff trend; (c) the runoff intra‐annual cycle is reasonably captured by all models yet an overestimation of intra‐annual variability and an early bias in peak flow timing are commonly found; and (d) model uncertainty leads to a larger uncertainty in runoff estimates than that induced by forcing uncertainty in ISIMIP2a, and model uncertainty in GLDAS is larger than that in ISIMIP2a. Finally, we confirm that the multi‐model ensemble is an effective way to reduce uncertainty in individual models except for CMIP6 regarding mean annual magnitude and annual runoff trend. Overall, our findings suggest that assessments/projections of runoff changes based on these global outputs contain great uncertainties and should be interpreted with caution, and call for more advanced, observation‐guided ensemble techniques for better large‐scale hydrological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
领导范儿应助务实砖头采纳,获得10
3秒前
王娟发布了新的文献求助10
4秒前
打打应助pqyang采纳,获得10
4秒前
5秒前
5秒前
研友_8QxN1Z完成签到,获得积分10
6秒前
楠D完成签到,获得积分10
6秒前
杳鸢应助松松的小起猫采纳,获得20
6秒前
丰富的赛君完成签到,获得积分10
7秒前
雨村完成签到,获得积分10
8秒前
sekidesu完成签到,获得积分10
8秒前
dan1029发布了新的文献求助80
8秒前
dan1029发布了新的文献求助10
8秒前
dan1029发布了新的文献求助10
8秒前
dan1029发布了新的文献求助10
8秒前
dan1029发布了新的文献求助10
8秒前
10秒前
华仔应助朴素的天薇采纳,获得10
10秒前
sekidesu发布了新的文献求助30
10秒前
dan1029发布了新的文献求助10
10秒前
dan1029发布了新的文献求助10
10秒前
10秒前
13秒前
孙文杰完成签到 ,获得积分10
13秒前
15秒前
16秒前
DDD完成签到,获得积分10
16秒前
maox1aoxin应助cimu95采纳,获得30
16秒前
侧耳倾听发布了新的文献求助10
16秒前
justsayit完成签到 ,获得积分10
17秒前
Orange应助728采纳,获得10
17秒前
傲寒完成签到,获得积分20
18秒前
taylorcurry完成签到,获得积分10
19秒前
耍酷大炮发布了新的文献求助10
19秒前
知犯何逆完成签到 ,获得积分10
19秒前
20秒前
小马甲应助优秀的排球采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234076
求助须知:如何正确求助?哪些是违规求助? 2880478
关于积分的说明 8215669
捐赠科研通 2548044
什么是DOI,文献DOI怎么找? 1377420
科研通“疑难数据库(出版商)”最低求助积分说明 647912
邀请新用户注册赠送积分活动 623263