Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models

地表径流 环境科学 数据同化 水流 气候学 强迫(数学) 气候模式 水文模型 水循环 径流模型 径流曲线数 气候变化 气象学 水文学(农业) 流域 地质学 地理 生态学 海洋学 生物 岩土工程 地图学
作者
Ying Hou,Hui Guo,Yuting Yang,Wenbin Liu
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:35
标识
DOI:10.1029/2021wr031817
摘要

Abstract Recent advances in global hydrological modeling yield many global runoff data sets that are extensively used in global hydrological analyses. Here, we provide a comprehensive evaluation of simulated runoff from 21 global models, including 12 climate models from CMIP6, six global hydrological models from the Inter‐Sectoral Impact Model Inter‐Comparison Project (ISMIP2a) and three land surface models from the Global Land Data Assimilation System (GLDAS), against observed streamflow in 840 unimpaired catchments globally. Our results show that (a) no model performs consistently better in estimating runoff from all aspects, and all models tend to perform better in more humid regions and non‐cold areas; (b) the interannual runoff variability is well represented in ISIMIP2a and GLDAS models, and no model performs satisfactorily in capturing the annual runoff trend; (c) the runoff intra‐annual cycle is reasonably captured by all models yet an overestimation of intra‐annual variability and an early bias in peak flow timing are commonly found; and (d) model uncertainty leads to a larger uncertainty in runoff estimates than that induced by forcing uncertainty in ISIMIP2a, and model uncertainty in GLDAS is larger than that in ISIMIP2a. Finally, we confirm that the multi‐model ensemble is an effective way to reduce uncertainty in individual models except for CMIP6 regarding mean annual magnitude and annual runoff trend. Overall, our findings suggest that assessments/projections of runoff changes based on these global outputs contain great uncertainties and should be interpreted with caution, and call for more advanced, observation‐guided ensemble techniques for better large‐scale hydrological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向小熊猫完成签到,获得积分10
刚刚
1秒前
魏嘉淇发布了新的文献求助10
1秒前
gazi发布了新的文献求助30
1秒前
阿林琳琳发布了新的文献求助10
1秒前
ALDRC完成签到,获得积分10
2秒前
2秒前
2秒前
太叔明辉完成签到,获得积分10
3秒前
Orange应助苍蝇搓手采纳,获得10
3秒前
3秒前
Orange应助小恶心采纳,获得10
4秒前
yyyyyggggg发布了新的文献求助10
5秒前
5秒前
5秒前
淡定依玉完成签到,获得积分20
7秒前
haimianbaobao完成签到 ,获得积分10
7秒前
奋斗冬萱完成签到,获得积分10
7秒前
清脆的书桃完成签到,获得积分10
7秒前
7秒前
Paddi发布了新的文献求助10
8秒前
果果昔关注了科研通微信公众号
8秒前
归尘应助lalala_ola采纳,获得10
9秒前
郑方形完成签到,获得积分10
9秒前
吉利完成签到,获得积分10
10秒前
衣锦夜行完成签到,获得积分10
10秒前
10秒前
duoduo完成签到,获得积分10
10秒前
搜集达人应助月饼同学采纳,获得10
10秒前
卓卓完成签到,获得积分10
10秒前
sh131完成签到,获得积分10
11秒前
11秒前
12秒前
Sansa333发布了新的文献求助10
13秒前
恰同学少年完成签到,获得积分10
13秒前
du发布了新的文献求助30
14秒前
爆米花应助yyyyyggggg采纳,获得10
14秒前
王瑞完成签到,获得积分10
14秒前
活力的驳完成签到,获得积分10
14秒前
MOOTEA发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149