Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models

地表径流 环境科学 数据同化 水流 气候学 强迫(数学) 气候模式 水文模型 水循环 径流模型 径流曲线数 气候变化 气象学 水文学(农业) 流域 地质学 地理 生态学 海洋学 地图学 岩土工程 生物
作者
Ying Hou,Hui Guo,Yuting Yang,Wenbin Liu
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:35
标识
DOI:10.1029/2021wr031817
摘要

Abstract Recent advances in global hydrological modeling yield many global runoff data sets that are extensively used in global hydrological analyses. Here, we provide a comprehensive evaluation of simulated runoff from 21 global models, including 12 climate models from CMIP6, six global hydrological models from the Inter‐Sectoral Impact Model Inter‐Comparison Project (ISMIP2a) and three land surface models from the Global Land Data Assimilation System (GLDAS), against observed streamflow in 840 unimpaired catchments globally. Our results show that (a) no model performs consistently better in estimating runoff from all aspects, and all models tend to perform better in more humid regions and non‐cold areas; (b) the interannual runoff variability is well represented in ISIMIP2a and GLDAS models, and no model performs satisfactorily in capturing the annual runoff trend; (c) the runoff intra‐annual cycle is reasonably captured by all models yet an overestimation of intra‐annual variability and an early bias in peak flow timing are commonly found; and (d) model uncertainty leads to a larger uncertainty in runoff estimates than that induced by forcing uncertainty in ISIMIP2a, and model uncertainty in GLDAS is larger than that in ISIMIP2a. Finally, we confirm that the multi‐model ensemble is an effective way to reduce uncertainty in individual models except for CMIP6 regarding mean annual magnitude and annual runoff trend. Overall, our findings suggest that assessments/projections of runoff changes based on these global outputs contain great uncertainties and should be interpreted with caution, and call for more advanced, observation‐guided ensemble techniques for better large‐scale hydrological applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
1秒前
1秒前
yuyukeke发布了新的文献求助10
1秒前
Rivers发布了新的文献求助30
2秒前
Dimple完成签到,获得积分10
2秒前
学术骗子小刚完成签到,获得积分0
3秒前
动听梨愁发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助陌上之心采纳,获得10
4秒前
科研通AI6应助绒裤病毒采纳,获得10
5秒前
5秒前
小屋完成签到,获得积分10
7秒前
赘婿应助虚幻百川采纳,获得10
7秒前
丽丽完成签到,获得积分20
8秒前
8秒前
所所应助慈祥的鑫采纳,获得10
8秒前
9秒前
dengdengdeng完成签到 ,获得积分10
9秒前
LKT发布了新的文献求助10
9秒前
清秀向雁发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
huhdcid发布了新的文献求助200
13秒前
hyscoll发布了新的文献求助10
13秒前
小马甲应助联润翔采纳,获得10
14秒前
LKT完成签到,获得积分10
14秒前
15秒前
syh发布了新的文献求助10
15秒前
万能图书馆应助yuyukeke采纳,获得10
15秒前
和光同尘完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
东郭一斩完成签到,获得积分10
17秒前
李健的小迷弟应助ydfqlzj采纳,获得20
18秒前
koui完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
Jimmy完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913