Interaction-Based Prediction for Dynamic Multiobjective Optimization

计算机科学 进化算法 多目标优化 趋同(经济学) 数学优化 人工神经网络 调度(生产过程) 人口 进化计算 人工智能 机器学习 数学 经济增长 社会学 人口学 经济
作者
Xiao-Fang Liu,Xin-Xin Xu,Zhi‐Hui Zhan,Yongchun Fang,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1881-1895 被引量:28
标识
DOI:10.1109/tevc.2023.3234113
摘要

Dynamic multiobjective optimization poses great challenges to evolutionary algorithms due to the change of optimal solutions or Pareto front with time. Learning-based methods are popular to extract the changing pattern of optimal solutions for predicting new solutions. They tend to use all variables as features (i.e., inputs) to build prediction models. However, there are usually some irrelevant and redundant variables, which increase training difficulty and decrease prediction accuracy. This article proposes a new interaction-based prediction (IP) method, which captures the correlation of variables with prediction targets and selects the most relevant variables to build prediction models using neural networks. In particular, the interaction between variables is detected to remove redundant variables. In addition, a correction procedure is developed to further improve predicted solutions according to the prediction error in past environments. The predicted solutions are used to update the population according to a specifically designed update strategy. Integrating the IP method into the framework of multiobjective evolutionary algorithm based on decomposition (MOEA/D), a new algorithm named IP-DMOEA is put forward. Experimental results on a typical dynamic multiobjective test suite demonstrate the better performance of the proposed IP-DMOEA than state-of-the-art algorithms in terms of convergence speed and solution quality. The proposed IP-DMOEA is also successfully applied to the multirobot task scheduling problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harry应助wangwangxiao采纳,获得10
刚刚
SciGPT应助tianyan采纳,获得30
刚刚
大个应助ee采纳,获得10
1秒前
科研通AI2S应助贝贝采纳,获得10
1秒前
schyue完成签到,获得积分10
1秒前
Azusa完成签到,获得积分10
1秒前
Akim应助yanmu2010采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
饼饼发布了新的文献求助10
3秒前
3秒前
orixero应助短短大王采纳,获得10
3秒前
泽丶发布了新的文献求助10
4秒前
4秒前
清风煮酒关注了科研通微信公众号
4秒前
5秒前
5秒前
5秒前
充电宝应助不扯先生采纳,获得10
5秒前
千寻未央完成签到,获得积分10
5秒前
5秒前
6秒前
我是大跌发布了新的文献求助10
6秒前
reed1220发布了新的文献求助10
6秒前
大方的曼容完成签到,获得积分10
7秒前
浮游应助阳光的小白菜采纳,获得10
7秒前
7秒前
7秒前
7秒前
陈广辉发布了新的文献求助10
7秒前
SciGPT应助大海风采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
朝朝发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531567
求助须知:如何正确求助?哪些是违规求助? 4620363
关于积分的说明 14572950
捐赠科研通 4560019
什么是DOI,文献DOI怎么找? 2498695
邀请新用户注册赠送积分活动 1478617
关于科研通互助平台的介绍 1449993