Interaction-Based Prediction for Dynamic Multiobjective Optimization

计算机科学 进化算法 多目标优化 趋同(经济学) 数学优化 人工神经网络 调度(生产过程) 人口 进化计算 人工智能 机器学习 数学 经济增长 社会学 人口学 经济
作者
Xiao-Fang Liu,Xin-Xin Xu,Zhi‐Hui Zhan,Yongchun Fang,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1881-1895 被引量:28
标识
DOI:10.1109/tevc.2023.3234113
摘要

Dynamic multiobjective optimization poses great challenges to evolutionary algorithms due to the change of optimal solutions or Pareto front with time. Learning-based methods are popular to extract the changing pattern of optimal solutions for predicting new solutions. They tend to use all variables as features (i.e., inputs) to build prediction models. However, there are usually some irrelevant and redundant variables, which increase training difficulty and decrease prediction accuracy. This article proposes a new interaction-based prediction (IP) method, which captures the correlation of variables with prediction targets and selects the most relevant variables to build prediction models using neural networks. In particular, the interaction between variables is detected to remove redundant variables. In addition, a correction procedure is developed to further improve predicted solutions according to the prediction error in past environments. The predicted solutions are used to update the population according to a specifically designed update strategy. Integrating the IP method into the framework of multiobjective evolutionary algorithm based on decomposition (MOEA/D), a new algorithm named IP-DMOEA is put forward. Experimental results on a typical dynamic multiobjective test suite demonstrate the better performance of the proposed IP-DMOEA than state-of-the-art algorithms in terms of convergence speed and solution quality. The proposed IP-DMOEA is also successfully applied to the multirobot task scheduling problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千寻发布了新的文献求助10
1秒前
2秒前
KasenDen发布了新的文献求助10
2秒前
海岸完成签到,获得积分10
2秒前
刘梦瑶发布了新的文献求助10
3秒前
万类霜天竞自由完成签到,获得积分10
3秒前
4秒前
赘婿应助木南采纳,获得10
5秒前
席涑发布了新的文献求助10
5秒前
FashionBoy应助xx采纳,获得10
5秒前
Hello应助杨金刚采纳,获得10
6秒前
童宝完成签到,获得积分10
6秒前
源源完成签到,获得积分10
7秒前
8秒前
9秒前
刘梦瑶完成签到,获得积分10
9秒前
9秒前
10秒前
limi发布了新的文献求助10
10秒前
eyu完成签到,获得积分10
10秒前
11秒前
jiangaimin完成签到,获得积分10
11秒前
chliyong发布了新的文献求助10
12秒前
小马甲应助w1x2123采纳,获得10
12秒前
zhanghl0816完成签到,获得积分10
12秒前
12秒前
PMX发布了新的文献求助10
12秒前
无花果应助深情以冬采纳,获得10
13秒前
花影移发布了新的文献求助10
13秒前
Lucas应助xiaoxixiccccc采纳,获得10
13秒前
蒲云海发布了新的文献求助10
14秒前
15秒前
谢增发布了新的文献求助10
15秒前
木南发布了新的文献求助10
17秒前
18秒前
yao chen完成签到,获得积分10
18秒前
浮游应助gyq采纳,获得10
19秒前
jacky发布了新的文献求助30
19秒前
Taozhi完成签到,获得积分10
20秒前
共享精神应助zqy采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563365
求助须知:如何正确求助?哪些是违规求助? 4648180
关于积分的说明 14684015
捐赠科研通 4590235
什么是DOI,文献DOI怎么找? 2518383
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369