Interaction-Based Prediction for Dynamic Multiobjective Optimization

计算机科学 进化算法 多目标优化 趋同(经济学) 数学优化 人工神经网络 调度(生产过程) 人口 进化计算 人工智能 机器学习 数学 经济增长 社会学 人口学 经济
作者
Xiao-Fang Liu,Xin-Xin Xu,Zhi‐Hui Zhan,Yongchun Fang,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1881-1895 被引量:19
标识
DOI:10.1109/tevc.2023.3234113
摘要

Dynamic multiobjective optimization poses great challenges to evolutionary algorithms due to the change of optimal solutions or Pareto front with time. Learning-based methods are popular to extract the changing pattern of optimal solutions for predicting new solutions. They tend to use all variables as features (i.e., inputs) to build prediction models. However, there are usually some irrelevant and redundant variables, which increase training difficulty and decrease prediction accuracy. This article proposes a new interaction-based prediction (IP) method, which captures the correlation of variables with prediction targets and selects the most relevant variables to build prediction models using neural networks. In particular, the interaction between variables is detected to remove redundant variables. In addition, a correction procedure is developed to further improve predicted solutions according to the prediction error in past environments. The predicted solutions are used to update the population according to a specifically designed update strategy. Integrating the IP method into the framework of multiobjective evolutionary algorithm based on decomposition (MOEA/D), a new algorithm named IP-DMOEA is put forward. Experimental results on a typical dynamic multiobjective test suite demonstrate the better performance of the proposed IP-DMOEA than state-of-the-art algorithms in terms of convergence speed and solution quality. The proposed IP-DMOEA is also successfully applied to the multirobot task scheduling problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkoop发布了新的文献求助10
刚刚
刚刚
Neon完成签到,获得积分10
1秒前
2秒前
香蕉书琴发布了新的文献求助10
4秒前
qq完成签到,获得积分10
4秒前
6秒前
7秒前
8秒前
笨笨过客完成签到,获得积分10
9秒前
慕青应助Okayoooooo采纳,获得10
9秒前
9秒前
zjz发布了新的文献求助20
13秒前
合适台灯发布了新的文献求助10
14秒前
小白发布了新的文献求助200
15秒前
今后应助baby3480采纳,获得10
15秒前
情怀应助小眼儿采纳,获得10
16秒前
17秒前
damnxas完成签到,获得积分10
19秒前
20秒前
桐桐应助热心小松鼠采纳,获得10
21秒前
Hello应助热心小松鼠采纳,获得10
21秒前
Ava应助热心小松鼠采纳,获得10
21秒前
科目三应助热心小松鼠采纳,获得10
21秒前
Owen应助热心小松鼠采纳,获得10
21秒前
丘比特应助热心小松鼠采纳,获得10
21秒前
情怀应助热心小松鼠采纳,获得10
21秒前
小蘑菇应助热心小松鼠采纳,获得10
21秒前
深情安青应助热心小松鼠采纳,获得10
21秒前
科目三应助ysy采纳,获得10
21秒前
思源应助热心小松鼠采纳,获得10
21秒前
22秒前
dd发布了新的文献求助10
24秒前
华贞完成签到,获得积分10
24秒前
25秒前
AlanLi发布了新的文献求助10
25秒前
CodeCraft应助cc采纳,获得10
28秒前
风趣青槐完成签到,获得积分10
28秒前
Ava应助honglingjing采纳,获得10
29秒前
shine完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432