N-doped carbon–iron heterointerfaces for boosted electrocatalytic active and selective ammonia production

催化作用 电催化剂 氨生产 碳纤维 无机化学 法拉第效率 选择性 环境污染 电化学 化学 材料科学 化学工程 纳米技术 有机化学 电极 环境保护 环境科学 工程类 物理化学 复合材料 复合数
作者
Shuo Zhang,Miao Li,Jiacheng Li,Qinan Song,Xiang Liu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (3) 被引量:27
标识
DOI:10.1073/pnas.2207080119
摘要

The electrochemical conversion of waste nitrate (NO3-) to valuable ammonia (NH3) is an economical and environmentally friendly technology for sustainable NH3 production. It is beneficial for environmental nitrogen pollution management and is also an appealing alternative to the current Haber-Bosch process for NH3 production. However, owing to the competing hydrogen evolution reaction, it is necessary to design highly efficient and stable electrocatalysts with high selectivity. Herein, we report a rational design of Fe nanoparticles wrapped in N-doped carbon (Fe@N10-C) as a high NH3 selective and efficient electrocatalyst using a metal-organic framework precursor. We constructed a catalyst with new active sites by doping with nitrogen, which activated neighboring carbon atoms and enhanced metal-to-carbon electron transfer, resulting in high catalytic activity. These doped N sites play a key role in the NO3- electroreduction. As a result, the Fe@N10-C nanoparticles with optimal doping of N demonstrated remarkable performance, with a record-high NO3- removal capacity of 125.8 ± 0.5 mg N gcat-1 h-1 and nearly 100 % (99.7 ± 0.1%) selectivity. The catalyst also delivers an impressive NH3 production rate of 2647.7 μg h-1 cm-2 and high faradaic efficiency of 91.8 ± 0.1%. This work provides a new route for N-doped carbon-iron catalysis application and paves the way for addressing energy and environmental issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小离发布了新的文献求助10
1秒前
yug完成签到,获得积分10
1秒前
坟里唱情歌完成签到 ,获得积分10
2秒前
kbj完成签到,获得积分10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
科研雷锋发布了新的文献求助10
3秒前
gen完成签到,获得积分10
3秒前
简单的丑完成签到,获得积分10
4秒前
今后应助日天的马铃薯采纳,获得10
4秒前
4秒前
4秒前
我是老大应助Ll采纳,获得10
4秒前
Lance先生完成签到,获得积分10
4秒前
5秒前
ChangSZ完成签到,获得积分10
5秒前
日月山河永在完成签到,获得积分10
5秒前
甜蜜英姑完成签到,获得积分10
6秒前
6秒前
怕黑向秋完成签到,获得积分10
6秒前
6秒前
852应助waq采纳,获得10
7秒前
海鸥海鸥完成签到,获得积分10
7秒前
7秒前
笑点低蜜蜂完成签到,获得积分10
7秒前
nana完成签到,获得积分10
7秒前
xiaoxiao完成签到,获得积分10
7秒前
顺心迎南发布了新的文献求助10
7秒前
8秒前
8秒前
xhy发布了新的文献求助10
8秒前
library2025完成签到,获得积分10
8秒前
FashionBoy应助宋十一采纳,获得10
8秒前
8秒前
有魅力哈密瓜完成签到,获得积分10
9秒前
gougoudy完成签到,获得积分20
9秒前
吃面包的熊猫完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672