亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

脂肪性肝炎 脂肪肝 医学 Boosting(机器学习) 梯度升压 脂肪变性 纳什均衡 算法 人工智能 计算机科学 机器学习 内科学 数学 疾病 数学优化 随机森林
作者
Jenny Lee,Max Westphal,Yasaman Vali,Jérôme Boursier,Salvatorre Petta,Rachel Ostroff,Leigh Alexander,Yu Chen,Céline Fournier,Andreas Geier,Sven Francque,Kristy Wonders,Dina Tiniakos,Pierre Bédossa,Mike Allison,George Papatheodoridis,Helena Cortêz-Pinto,Raluca Pais,Jean‐François Dufour,Diana Julie Leeming
出处
期刊:Hepatology [Wiley]
卷期号:78 (1): 258-271 被引量:20
标识
DOI:10.1097/hep.0000000000000364
摘要

Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科目三应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
8秒前
21秒前
37秒前
51秒前
一一完成签到,获得积分10
55秒前
1分钟前
CHENG发布了新的文献求助20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无情翅膀完成签到,获得积分10
1分钟前
kingwill应助CHENG采纳,获得20
1分钟前
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
liushangyuan发布了新的文献求助10
2分钟前
朴实山兰完成签到 ,获得积分10
2分钟前
2分钟前
liushangyuan关注了科研通微信公众号
2分钟前
2分钟前
浮游应助null采纳,获得10
2分钟前
2分钟前
ClarkClarkson完成签到,获得积分10
2分钟前
满意人英完成签到,获得积分10
2分钟前
默默善愁发布了新的文献求助30
2分钟前
yan完成签到,获得积分10
2分钟前
2分钟前
乐乐应助yan采纳,获得10
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692