Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

脂肪性肝炎 脂肪肝 医学 Boosting(机器学习) 梯度升压 脂肪变性 纳什均衡 算法 人工智能 计算机科学 机器学习 内科学 数学 疾病 数学优化 随机森林
作者
Jenny Lee,Max Westphal,Yasaman Vali,Jérôme Boursier,Salvatorre Petta,Rachel Ostroff,Leigh Alexander,Yu Chen,Céline Fournier,Andreas Geier,Sven Francque,Kristy Wonders,Dina Tiniakos,Pierre Bédossa,Mike Allison,George Papatheodoridis,Helena Cortêz-Pinto,Raluca Pais,Jean‐François Dufour,Diana Julie Leeming
出处
期刊:Hepatology [Wiley]
卷期号:78 (1): 258-271 被引量:20
标识
DOI:10.1097/hep.0000000000000364
摘要

Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助勤恳冰淇淋采纳,获得30
刚刚
沙xiaohan发布了新的文献求助10
1秒前
1秒前
HappyPlato完成签到,获得积分10
2秒前
范达克完成签到 ,获得积分10
3秒前
556发布了新的文献求助10
3秒前
Orange应助韦娜采纳,获得10
3秒前
3秒前
小二完成签到,获得积分10
4秒前
支半雪发布了新的文献求助10
4秒前
Owen应助心灵美的大地采纳,获得10
5秒前
5秒前
情怀应助琪琪扬扬采纳,获得10
6秒前
6秒前
7秒前
天天快乐应助刘优秀采纳,获得10
7秒前
8秒前
8秒前
10秒前
QQ完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
科研通AI6应助皮飞111采纳,获得10
13秒前
14秒前
15秒前
徐徐徐徐徐徐徐完成签到,获得积分20
15秒前
houyan发布了新的文献求助10
16秒前
吃饭了发布了新的文献求助10
16秒前
舒适翠柏完成签到 ,获得积分10
16秒前
CodeCraft应助小Z采纳,获得10
17秒前
默默苡发布了新的文献求助10
18秒前
琪琪扬扬发布了新的文献求助10
18秒前
18秒前
18秒前
潇湘菌子完成签到,获得积分10
19秒前
19秒前
我是老大应助沉默玉米采纳,获得10
20秒前
拿拿餐餐发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604