Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

脂肪性肝炎 脂肪肝 医学 Boosting(机器学习) 梯度升压 脂肪变性 纳什均衡 算法 人工智能 计算机科学 机器学习 内科学 数学 疾病 数学优化 随机森林
作者
Jenny Lee,Max Westphal,Yasaman Vali,Jérôme Boursier,Salvatore Petta,Rachel Ostroff,Leigh Alexander,Yu Chen,C. Fournier,Andreas Geier,Sven Francque,Kristy Wonders,Dina Tiniakos,Pierre Bedossa,Mike Allison,George V. Papatheodoridis,Helena Cortez‐Pinto,Raluca Pais,Jean‐François Dufour,Diana Julie Leeming,S. J. Harrison,Jeremy Cobbold,Adriaan G. Holleboom,Hannele Yki‐Järvinen,Javier Crespo,Mattias Ekstedt,Guruprasad P. Aithal,Elisabetta Bugianesi,Manuel Romero‐Gómez,Richard Torstenson,Morten A. Karsdal,Carla Yunis,Jörn M. Schattenberg,Detlef Schuppan,Vlad Ratziu,Clifford A. Brass,Kevin L. Duffin,Aeilko H. Zwinderman,Michael Pavlides,Quentin M. Anstee,Patrick M. Bossuyt
出处
期刊:Hepatology [Wiley]
卷期号:78 (1): 258-271 被引量:6
标识
DOI:10.1097/hep.0000000000000364
摘要

Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的大白完成签到,获得积分10
1秒前
调皮鞯完成签到 ,获得积分10
1秒前
领导范儿应助杰森斯坦虎采纳,获得10
3秒前
亮子完成签到,获得积分10
5秒前
ff发布了新的文献求助20
7秒前
9秒前
妮妮完成签到,获得积分20
10秒前
11秒前
heavenhorse应助奈何采纳,获得30
12秒前
13秒前
14秒前
善学以致用应助Webridging采纳,获得10
14秒前
ff发布了新的文献求助10
17秒前
18秒前
希望天下0贩的0应助Z赵采纳,获得10
19秒前
杰森斯坦虎完成签到,获得积分10
20秒前
汉堡包应助monica采纳,获得10
22秒前
伊索寓言发布了新的文献求助10
23秒前
25秒前
27秒前
28秒前
精明蘑菇完成签到,获得积分10
28秒前
31秒前
难过的树叶完成签到,获得积分10
31秒前
含蓄越彬完成签到,获得积分10
32秒前
Maocan发布了新的文献求助10
33秒前
33秒前
俏皮的玉米完成签到 ,获得积分10
33秒前
Z赵发布了新的文献求助10
33秒前
34秒前
静默完成签到 ,获得积分10
35秒前
ff发布了新的文献求助20
37秒前
43秒前
SciGPT应助honphyjiang采纳,获得10
46秒前
自行者发布了新的文献求助10
46秒前
ff发布了新的文献求助10
47秒前
zyfqpc完成签到,获得积分10
47秒前
48秒前
喵咪西西完成签到 ,获得积分10
49秒前
52秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339796
求助须知:如何正确求助?哪些是违规求助? 2967851
关于积分的说明 8631285
捐赠科研通 2647360
什么是DOI,文献DOI怎么找? 1449590
科研通“疑难数据库(出版商)”最低求助积分说明 671464
邀请新用户注册赠送积分活动 660441