脂肪性肝炎
脂肪肝
医学
Boosting(机器学习)
梯度升压
脂肪变性
纳什均衡
算法
人工智能
计算机科学
机器学习
内科学
数学
疾病
数学优化
随机森林
作者
Jenny Lee,Max Westphal,Yasaman Vali,Jérôme Boursier,Salvatorre Petta,Rachel Ostroff,Leigh Alexander,Yu Chen,Céline Fournier,Andreas Geier,Sven Francque,Kristy Wonders,Dina Tiniakos,Pierre Bédossa,Mike Allison,George Papatheodoridis,Helena Cortêz-Pinto,Raluca Pais,Jean‐François Dufour,Diana Julie Leeming
出处
期刊:Hepatology
[Wiley]
日期:2023-03-30
卷期号:78 (1): 258-271
被引量:20
标识
DOI:10.1097/hep.0000000000000364
摘要
Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI