Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

脂肪性肝炎 脂肪肝 医学 Boosting(机器学习) 梯度升压 脂肪变性 纳什均衡 算法 人工智能 计算机科学 机器学习 内科学 数学 疾病 数学优化 随机森林
作者
Jenny Lee,Max Westphal,Yasaman Vali,Jérôme Boursier,Salvatore Petta,Rachel Ostroff,Leigh Alexander,Yu Chen,C. Fournier,Andreas Geier,Sven Francque,Kristy Wonders,Dina Tiniakos,Pierre Bedossa,Mike Allison,George V. Papatheodoridis,Helena Cortez‐Pinto,Raluca Pais,Jean‐François Dufour,Diana Julie Leeming,S. J. Harrison,Jeremy Cobbold,Adriaan G. Holleboom,Hannele Yki‐Järvinen,Javier Crespo,Mattias Ekstedt,Guruprasad P. Aithal,Elisabetta Bugianesi,Manuel Romero‐Gómez,Richard Torstenson,Morten A. Karsdal,Carla Yunis,Jörn M. Schattenberg,Detlef Schuppan,Vlad Ratziu,Clifford A. Brass,Kevin L. Duffin,Aeilko H. Zwinderman,Michael Pavlides,Quentin M. Anstee,Patrick M. Bossuyt
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:78 (1): 258-271 被引量:6
标识
DOI:10.1097/hep.0000000000000364
摘要

Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助smiling采纳,获得10
刚刚
王星星发布了新的文献求助10
1秒前
今后应助超级月饼采纳,获得10
1秒前
2秒前
夏日发布了新的文献求助10
3秒前
4秒前
bkagyin应助YHF2采纳,获得10
5秒前
5秒前
12233完成签到,获得积分10
5秒前
6秒前
么大人发布了新的文献求助10
6秒前
沉默的星月完成签到,获得积分10
7秒前
FashionBoy应助Archer采纳,获得20
7秒前
爆米花应助思维隋采纳,获得10
7秒前
无花果应助王星星采纳,获得10
8秒前
Lucas应助粗心的安彤采纳,获得10
9秒前
yuli发布了新的文献求助10
9秒前
9秒前
曾经的慕灵完成签到,获得积分10
12秒前
luckin9发布了新的文献求助10
12秒前
12秒前
cy发布了新的文献求助30
13秒前
13秒前
吃人陈发布了新的文献求助10
14秒前
勤恳的仰发布了新的文献求助20
16秒前
16秒前
Simlove发布了新的文献求助10
16秒前
雷红完成签到,获得积分10
17秒前
17秒前
18秒前
无花果应助xiaoya采纳,获得10
18秒前
smiling发布了新的文献求助10
18秒前
花花金兔发布了新的文献求助10
18秒前
小十一完成签到 ,获得积分10
18秒前
19秒前
ability发布了新的文献求助30
19秒前
高高发布了新的文献求助10
21秒前
CipherSage应助山河与海采纳,获得10
22秒前
雷红发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142