Development and validation of an insulin resistance model for a population without diabetes mellitus and its clinical implication: a prospective cohort study

医学 全国健康与营养检查调查 糖尿病 胰岛素抵抗 队列 人口 体质指数 内科学 前瞻性队列研究 数据库 人口学 内分泌学 环境卫生 社会学 计算机科学
作者
Shang‐Feng Tsai,Chao‐Tung Yang,Wei-Ju Liu,Chia-Lin Lee
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:58: 101934-101934 被引量:21
标识
DOI:10.1016/j.eclinm.2023.101934
摘要

Insulin resistance (IR) is associated with diabetes mellitus, cardiovascular disease (CV), and mortality. Few studies have used machine learning to predict IR in the non-diabetic population.In this prospective cohort study, we trained a predictive model for IR in the non-diabetic populations using the US National Health and Nutrition Examination Survey (NHANES, from JAN 01, 1999 to DEC 31, 2012) database and the Taiwan MAJOR (from JAN 01, 2008 to DEC 31, 2017) database. We analysed participants in the NHANES and MAJOR and participants were excluded if they were aged <18 years old, had incomplete laboratory data, or had DM. To investigate the clinical implications (CV and all-cause mortality) of this trained model, we tested it with the Taiwan biobank (TWB) database from DEC 10, 2008 to NOV 30, 2018. We then used SHapley Additive exPlanation (SHAP) values to explain differences across the machine learning models.Of all participants (combined NHANES and MJ databases), we randomly selected 14,705 participants for the training group, and 4018 participants for the validation group. In the validation group, their areas under the curve (AUC) were all >0.8 (highest being XGboost, 0.87). In the test group, all AUC were also >0.80 (highest being XGboost, 0.88). Among all 9 features (age, gender, race, body mass index, fasting plasma glucose (FPG), glycohemoglobin, triglyceride, total cholesterol and high-density cholesterol), BMI had the highest value of feature importance on IR (0.43 for XGboost and 0.47 for RF algorithms). All participants from the TWB database were separated into the IR group and the non-IR group according to the XGboost algorithm. The Kaplan-Meier survival curve showed a significant difference between the IR and non-IR groups (p < 0.0001 for CV mortality, and p = 0.0006 for all-cause mortality). Therefore, the XGboost model has clear clinical implications for predicting IR, aside from CV and all-cause mortality.To predict IR in non-diabetic patients with high accuracy, only 9 easily obtained features are needed for prediction accuracy using our machine learning model. Similarly, the model predicts IR patients with significantly higher CV and all-cause mortality. The model can be applied to both Asian and Caucasian populations in clinical practice.Taichung Veterans General Hospital, Taiwan and Japan Society for the Promotion of Science KAKENHI Grant Number JP21KK0293.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信安露关注了科研通微信公众号
1秒前
欢呼凡旋发布了新的文献求助10
2秒前
尉迟发布了新的文献求助10
2秒前
烟花应助小李采纳,获得10
3秒前
sure完成签到 ,获得积分10
4秒前
颇黎完成签到,获得积分10
5秒前
祖宁完成签到,获得积分10
5秒前
ilexL完成签到 ,获得积分10
5秒前
刘彤完成签到,获得积分10
7秒前
顺利萧完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
9秒前
9秒前
ilexL关注了科研通微信公众号
10秒前
JamesPei应助NZH采纳,获得10
10秒前
z7777777发布了新的文献求助10
10秒前
科研通AI2S应助太渊采纳,获得10
10秒前
过雪完成签到 ,获得积分10
11秒前
songnvshi完成签到 ,获得积分10
11秒前
今后应助哈哈采纳,获得10
12秒前
传奇3应助aefs采纳,获得10
12秒前
桐桐应助wrm采纳,获得30
12秒前
完美世界应助iwsaml采纳,获得10
13秒前
13秒前
乐乐应助研友_LkD29n采纳,获得200
14秒前
自信安露发布了新的文献求助10
14秒前
17秒前
19秒前
MY完成签到,获得积分10
19秒前
aefs完成签到,获得积分20
20秒前
Clover完成签到 ,获得积分10
21秒前
aefs发布了新的文献求助10
23秒前
23秒前
24秒前
刺猬完成签到,获得积分10
24秒前
24秒前
Jasper应助海月采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954