Development and validation of an insulin resistance model for a population without diabetes mellitus and its clinical implication: a prospective cohort study

医学 全国健康与营养检查调查 糖尿病 胰岛素抵抗 队列 人口 体质指数 内科学 前瞻性队列研究 数据库 人口学 内分泌学 环境卫生 社会学 计算机科学
作者
Shang‐Feng Tsai,Chao‐Tung Yang,Wei-Ju Liu,Chia-Lin Lee
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101934-101934 被引量:29
标识
DOI:10.1016/j.eclinm.2023.101934
摘要

Insulin resistance (IR) is associated with diabetes mellitus, cardiovascular disease (CV), and mortality. Few studies have used machine learning to predict IR in the non-diabetic population.In this prospective cohort study, we trained a predictive model for IR in the non-diabetic populations using the US National Health and Nutrition Examination Survey (NHANES, from JAN 01, 1999 to DEC 31, 2012) database and the Taiwan MAJOR (from JAN 01, 2008 to DEC 31, 2017) database. We analysed participants in the NHANES and MAJOR and participants were excluded if they were aged <18 years old, had incomplete laboratory data, or had DM. To investigate the clinical implications (CV and all-cause mortality) of this trained model, we tested it with the Taiwan biobank (TWB) database from DEC 10, 2008 to NOV 30, 2018. We then used SHapley Additive exPlanation (SHAP) values to explain differences across the machine learning models.Of all participants (combined NHANES and MJ databases), we randomly selected 14,705 participants for the training group, and 4018 participants for the validation group. In the validation group, their areas under the curve (AUC) were all >0.8 (highest being XGboost, 0.87). In the test group, all AUC were also >0.80 (highest being XGboost, 0.88). Among all 9 features (age, gender, race, body mass index, fasting plasma glucose (FPG), glycohemoglobin, triglyceride, total cholesterol and high-density cholesterol), BMI had the highest value of feature importance on IR (0.43 for XGboost and 0.47 for RF algorithms). All participants from the TWB database were separated into the IR group and the non-IR group according to the XGboost algorithm. The Kaplan-Meier survival curve showed a significant difference between the IR and non-IR groups (p < 0.0001 for CV mortality, and p = 0.0006 for all-cause mortality). Therefore, the XGboost model has clear clinical implications for predicting IR, aside from CV and all-cause mortality.To predict IR in non-diabetic patients with high accuracy, only 9 easily obtained features are needed for prediction accuracy using our machine learning model. Similarly, the model predicts IR patients with significantly higher CV and all-cause mortality. The model can be applied to both Asian and Caucasian populations in clinical practice.Taichung Veterans General Hospital, Taiwan and Japan Society for the Promotion of Science KAKENHI Grant Number JP21KK0293.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Largequail完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
Chuwei发布了新的文献求助10
6秒前
6秒前
梨llll发布了新的文献求助10
6秒前
gfy发布了新的文献求助10
6秒前
马呆呆发布了新的文献求助200
7秒前
8秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
TITIME发布了新的文献求助10
9秒前
冰冰发布了新的文献求助10
10秒前
马呆呆应助小全采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI5应助可爱嚣采纳,获得10
11秒前
英俊的铭应助牛乘风采纳,获得10
11秒前
柑橘涩子发布了新的文献求助10
11秒前
差劲先生完成签到,获得积分10
12秒前
DAJI发布了新的文献求助30
13秒前
葵小葵发布了新的文献求助10
13秒前
负责的珩完成签到 ,获得积分10
13秒前
大神完成签到,获得积分10
20秒前
23秒前
梨llll完成签到,获得积分10
24秒前
Ceceliayyy完成签到 ,获得积分10
24秒前
25秒前
柑橘涩子完成签到,获得积分10
26秒前
HaRd完成签到 ,获得积分10
28秒前
29秒前
30秒前
上官若男应助gujianhua采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012