Unpaired image-to-image translation of structural damage

计算机科学 图像翻译 人工智能 杠杆(统计) 对抗制 翻译(生物学) 鉴定(生物学) 图像(数学) 背景(考古学) 生成对抗网络 深度学习 图像编辑 深层神经网络 模式识别(心理学) 计算机视觉 生物化学 生物 信使核糖核酸 基因 古生物学 化学 植物
作者
Subin Varghese,Vedhus Hoskere
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 101940-101940 被引量:12
标识
DOI:10.1016/j.aei.2023.101940
摘要

Condition assessment of civil infrastructure from manual inspections can be time consuming, subjective, and unsafe. Advances in computer vision and Deep Neural Networks (DNNs) provide methods for automating important condition assessment tasks such as damage and context identification. One critical challenge towards the training of robust and generalizable DNNs for damage identification is the difficulty in obtaining large and diverse datasets. To maximally leverage available data, researchers have investigated using synthetic images of damaged structures from Generative Adversarial Networks (GANs) for data augmentation. However, GANs are limited in the diversity of data they can produce as they are only able to interpolate between samples of damaged structures in a dataset. Unpaired image-to-image translation using Cycle Consistent Adversarial Networks (CCAN) provide one means of extending the diversity and control in generated images, but have not been investigated for applications in condition assessment. We present EIGAN, a novel CCAN architecture for generating realistic synthetic images of a damaged structure, given an image of its undamaged state. EIGAN has the capability to translate undamaged images to damaged representations and vice-versa while retaining the geometric structure of the infrastructure (e.g, building shape, layout, color, size etc). We create a new unpaired dataset of damaged and undamaged building images taken after the 2017 Puebla Earthquake. Using this dataset, we demonstrate how EIGAN is able to address shortcomings of three other established CCAN architectures specifically for damage translation with both qualitative and quantitative measures. Additionally, we introduce a new methodology to explore the latent space of EIGAN allowing for some control over the properties of the generated damage (e.g., the damage severity). The results demonstrate that unpaired image-to-image translation of undamaged to damaged structures is an effective means of data augmentation to improve network performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气男孩应助Coco采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
加一完成签到,获得积分10
3秒前
熊蔓蔓完成签到,获得积分10
5秒前
dingyi601完成签到,获得积分10
5秒前
tt123完成签到,获得积分10
5秒前
6秒前
糟糕的学姐完成签到,获得积分10
7秒前
yookia应助vbbbj采纳,获得10
7秒前
今后应助124cndhaP采纳,获得30
8秒前
meng完成签到 ,获得积分10
9秒前
HHHZZZ完成签到,获得积分10
9秒前
香蕉沧海发布了新的文献求助10
10秒前
高挑的梦芝完成签到,获得积分10
11秒前
婷123发布了新的文献求助20
11秒前
12秒前
我不爱池鱼应助Torment采纳,获得10
12秒前
小阮完成签到,获得积分10
12秒前
12秒前
迷人问兰发布了新的文献求助30
13秒前
vovoking完成签到 ,获得积分10
13秒前
14秒前
Jasper应助nuannuan采纳,获得10
14秒前
hzwyyds应助栗子采纳,获得10
16秒前
李希发布了新的文献求助50
16秒前
英俊的铭应助元宝采纳,获得10
17秒前
ZJHYNL应助111采纳,获得20
17秒前
早睡早起发布了新的文献求助10
18秒前
鳗鱼焦完成签到 ,获得积分10
18秒前
新威宝贝发布了新的文献求助10
19秒前
Jocd完成签到,获得积分10
24秒前
小二郎应助SAOKA采纳,获得10
26秒前
农夫果园完成签到,获得积分10
28秒前
30秒前
加二完成签到,获得积分10
31秒前
32秒前
辞忧完成签到,获得积分10
32秒前
无情的豆芽完成签到 ,获得积分10
35秒前
ASDS发布了新的文献求助10
35秒前
SAOKA发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713