乙酰化
SIRT3
氧化磷酸化
生物
线粒体
柠檬酸循环
细胞色素c氧化酶
生物化学
细胞生物学
胞浆
呼吸链
酶
锡尔图因
基因
作者
Dongdong Chen,Qi Shi,Xin Liu,Dong-Lin Liang,Yue-Zhang Wu,Q Fan,Kang Xiao,Cao Chen,Xiao‐Ping Dong
标识
DOI:10.1021/acschemneuro.2c00786
摘要
Post-translational modifications of proteins, such as acetylation and SUMOylation, play important roles in regulation of protein functions and pathophysiology of different diseases including neurodegenerative diseases. Our previous studies have identified aberrant acetylation profiles and reduced deacetylases Sirt3 and Sirt1 in the brains of prion-infected mouse models. In this study, we have found that the levels of acetylated forms of AceCS2 and LCAD, the key enzymes regulating lipid metabolism, CS and IHD2, the key enzymes regulating complete oxidative metabolism, GDH, the key enzyme regulating the oxidative decomposition of glutamate into the tricarboxylic acid (TCA) cycle, and NDUFA9, the essential component in the complex I of respiratory chain activity, were significantly upregulated in the prion-infected animal and cell models, along with the decrease of Sirt3 activity and mitochondrial cytochrome c oxidase activity. Meanwhile, the increases of SUMO1 modifications and SUMO1-Sirt3 and decrease of SENP1 were identified in the brains and the cultured cells with prion infections. Removal of prion propagation in the cultured cells partially, but significantly, reversed the aberrant situations. Moreover, similar abnormal phenomena were also observed in the cultured 293 T cells transiently expressing cytosolic form PrP (Cyto-PrP), including decreased SENP1, increased SUMO1, decreased Sirt3 activity, increased acetylated forms of the key enzymes, and decreased cytochrome c oxidase activity. Attenuation of the accumulation of Cyto-PrP by co-expression of the p62 protein sufficiently diminished those abnormalities. The data here strongly indicate that deposits of prions in brains or accumulations of Cyto-PrP in cells trigger dysregulation of the SENP1-SUMO1-Sirt pathway and subsequently induce aberrant mitochondrial deacetylation and the mitochondrial respiratory chain.
科研通智能强力驱动
Strongly Powered by AbleSci AI