Self-Assembled Ligand-Capped Plasmonic Au Nanoparticle Films in the Kretschmann Configuration for Sensing of Volatile Organic Compounds

等离子体子 纳米颗粒 材料科学 配体(生物化学) 纳米技术 光电子学 化学 受体 生物化学
作者
Rituraj Borah,Jorid Smets,Rajeshreddy Ninakanti,Max L. Tietze,Rob Ameloot,Dmitry N. Chigrin,Sara Bals,Silvia Lenaerts,Sammy W. Verbruggen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (8): 11494-11505 被引量:11
标识
DOI:10.1021/acsanm.2c02524
摘要

Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
充电宝应助大饼卷肉采纳,获得10
刚刚
天天快乐应助大饼卷肉采纳,获得10
1秒前
科目三应助大饼卷肉采纳,获得10
1秒前
乐乐应助大饼卷肉采纳,获得10
1秒前
赘婿应助大饼卷肉采纳,获得10
1秒前
ding应助大饼卷肉采纳,获得10
1秒前
思源应助大饼卷肉采纳,获得10
1秒前
儒雅醉冬完成签到,获得积分10
1秒前
wanci应助大饼卷肉采纳,获得10
1秒前
孟德尔吃豌豆完成签到,获得积分10
1秒前
舒心的幻天完成签到,获得积分10
2秒前
高高的宛亦完成签到,获得积分10
2秒前
专吃小孩完成签到,获得积分10
2秒前
Liberal-5完成签到 ,获得积分10
3秒前
3秒前
天天快乐应助胡靓靓采纳,获得10
4秒前
4秒前
科研通AI2S应助liuqizong123采纳,获得10
4秒前
ghn123456789发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
不安毛豆应助qiaoj2006采纳,获得10
6秒前
爸爸发布了新的文献求助10
6秒前
Lucas应助淡然的水蓝采纳,获得20
6秒前
6秒前
新羽完成签到,获得积分10
6秒前
在水一方应助慈祥的翠桃采纳,获得10
6秒前
英俊的铭应助慈祥的翠桃采纳,获得10
6秒前
大模型应助慈祥的翠桃采纳,获得10
6秒前
充电宝应助慈祥的翠桃采纳,获得10
6秒前
彭于晏应助慈祥的翠桃采纳,获得10
7秒前
打打应助慈祥的翠桃采纳,获得10
7秒前
小奶球完成签到,获得积分20
7秒前
7秒前
7秒前
小蘑菇应助小石头采纳,获得10
8秒前
LL完成签到,获得积分10
8秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245223
求助须知:如何正确求助?哪些是违规求助? 2888917
关于积分的说明 8256094
捐赠科研通 2557285
什么是DOI,文献DOI怎么找? 1385910
科研通“疑难数据库(出版商)”最低求助积分说明 650265
邀请新用户注册赠送积分活动 626494