Self-Assembled Ligand-Capped Plasmonic Au Nanoparticle Films in the Kretschmann Configuration for Sensing of Volatile Organic Compounds

等离子体子 纳米颗粒 材料科学 配体(生物化学) 纳米技术 光电子学 化学 受体 生物化学
作者
Rituraj Borah,Jorid Smets,Rajeshreddy Ninakanti,Max L. Tietze,Rob Ameloot,Dmitry N. Chigrin,Sara Bals,Silvia Lenaerts,Sammy W. Verbruggen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (8): 11494-11505 被引量:11
标识
DOI:10.1021/acsanm.2c02524
摘要

Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22发布了新的文献求助10
刚刚
WxChen完成签到,获得积分10
1秒前
DIY101发布了新的文献求助20
1秒前
YuJianQiao完成签到,获得积分10
1秒前
CodeCraft应助li_ao采纳,获得10
1秒前
舒心的南烟完成签到,获得积分10
1秒前
马甲甲完成签到,获得积分10
1秒前
2秒前
ZXW完成签到,获得积分10
2秒前
阿巴阿巴发布了新的文献求助10
2秒前
嘟哈克完成签到,获得积分10
2秒前
飞飞完成签到,获得积分10
3秒前
3秒前
平淡幻枫发布了新的文献求助10
3秒前
NexusExplorer应助mcqm采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
4秒前
young应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
快乐的小叮当完成签到,获得积分10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
愉快之槐应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
young应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
CAOHOU应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
科研通AI2S应助WQY采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051