亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites

材料科学 空间电荷 纳米复合材料 电场 电介质 化学物理 电气故障 介电强度 分子动力学 纳米颗粒 纳米技术 化学 光电子学 计算化学 电子 物理 量子力学
作者
Zhen Li,Yongsen Han,Ji Liu,Daomin Min,Shengtao Li
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:121 (5) 被引量:21
标识
DOI:10.1063/5.0097351
摘要

In dielectric science, the electrical breakdown strength of a polymeric material significantly decreases with elevated temperatures, which restricts the development of advanced electrical and electronic applications toward miniaturization. In the present study, to clarify the temperature-dependent DC breakdown mechanisms of epoxy resin (EP)/TiO2 nanocomposites, the effects of nanoparticle incorporation and temperature on charge transport and molecular chain dynamics were studied. The results indicate that space charge accumulation and electric field distortion are reduced by nanoparticle incorporation to enhance the deep trap level, while space charge accumulation, electric field distortion, and molecular displacement are all accelerated as temperature increases. To further investigate the influence of carrier traps and molecular chain dynamics on temperature-dependent breakdown, a DC breakdown simulation model that involves bipolar charge transport, molecular chain dynamics, and breakdown criterion equations is established. The calculated breakdown strengths of EP/TiO2 nanocomposites show great accordance with the experimental results, which indicates that temperature-dependent DC breakdown mechanisms are dominated by the synergetic effects of carrier traps and segment chain dynamics. Through the analysis of the breakdown model, a transition of the dominant mechanism (from segment chain to backbone dynamics) near the glass-transition temperature for DC breakdown of EP/TiO2 nanocomposites is discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv完成签到 ,获得积分10
2秒前
我是老大应助英俊的凡梅采纳,获得10
5秒前
jiali关注了科研通微信公众号
6秒前
10秒前
科研花完成签到 ,获得积分10
11秒前
明理丹烟完成签到,获得积分10
11秒前
独特的鱼完成签到,获得积分10
11秒前
16秒前
wynne313完成签到 ,获得积分10
18秒前
21秒前
24秒前
24秒前
25秒前
25秒前
俭朴蜜蜂完成签到 ,获得积分10
26秒前
27秒前
27秒前
赵娜发布了新的文献求助10
28秒前
小洛完成签到 ,获得积分10
29秒前
吕小软完成签到,获得积分10
29秒前
30秒前
yezio发布了新的文献求助10
31秒前
小鸟芋圆露露完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
青柳雅春完成签到,获得积分10
33秒前
烟花应助霸气又萌采纳,获得10
33秒前
闪闪的熠彤完成签到,获得积分10
37秒前
swimming完成签到 ,获得积分10
37秒前
38秒前
yezio完成签到,获得积分10
38秒前
Hey完成签到,获得积分10
39秒前
刻苦的念柏应助Lisa采纳,获得10
40秒前
ycwang完成签到,获得积分10
40秒前
双青豆完成签到 ,获得积分10
40秒前
脑洞疼应助闪闪的熠彤采纳,获得10
41秒前
Wenshu发布了新的文献求助10
43秒前
43秒前
此去经年完成签到 ,获得积分10
43秒前
43秒前
我吃小饼干完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426257
求助须知:如何正确求助?哪些是违规求助? 4540076
关于积分的说明 14171541
捐赠科研通 4457844
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164