Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

计算机科学 学习迁移 加权 人工智能 机器学习 特征(语言学) 深度学习 多源 数据挖掘 GSM演进的增强数据速率 分歧(语言学) 先验与后验 医学 语言学 哲学 统计 数学 认识论 放射科
作者
Yilun Jin,Kai Chen,Qiang Yang
标识
DOI:10.1145/3534678.3539250
摘要

Deep learning models have been demonstrated powerful in modeling complex spatio-temporal data for traffic prediction. In practice, effective deep traffic prediction models rely on large-scale traffic data, which is not always available in real-world scenarios. To alleviate the data scarcity issue, a promising way is to use cross-city transfer learning methods to fine-tune well-trained models from source cities with abundant data. However, existing approaches overlook the divergence between source and target cities, and thus, the trained model from source cities may contain noise or even harmful source knowledge. To address the problem, we propose CrossTReS, a selective transfer learning framework for traffic prediction that adaptively re-weights source regions to assist target fine-tuning. As a general framework for fine-tuning-based cross-city transfer learning, CrossTReS consists of a feature network, a weighting network, and a prediction model. We train the feature network with node- and edge-level domain adaptation techniques to learn generalizable spatial features for both source and target cities. We further train the weighting network via source-target joint meta-learning such that source regions helpful to target fine-tuning are assigned high weights. Finally, the prediction model is selectively trained on the source city with the learned weights to initialize target fine-tuning. We evaluate CrossTReS using real-world taxi and bike data, where under the same settings, CrossTReS outperforms state-of-the-art baselines by up to 8%. Moreover, the learned region weights offer interpretable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
巫马百招完成签到,获得积分10
3秒前
SZU_Julian发布了新的文献求助30
4秒前
JamesPei应助ff采纳,获得10
7秒前
SZU_Julian完成签到,获得积分10
10秒前
gy完成签到,获得积分10
11秒前
赘婿应助alvin采纳,获得10
12秒前
小蘑菇应助开朗可行采纳,获得10
13秒前
Jayzie完成签到 ,获得积分10
13秒前
miuu发布了新的文献求助10
15秒前
怕孤独的自行车完成签到,获得积分10
17秒前
18秒前
学术rookie完成签到,获得积分10
20秒前
拉那发布了新的文献求助20
20秒前
酷酷世德完成签到,获得积分10
22秒前
23秒前
干净思远发布了新的文献求助10
28秒前
茄子酱发布了新的文献求助10
29秒前
30秒前
Lucas应助聪明的青雪采纳,获得10
30秒前
撒拉溪吧完成签到 ,获得积分10
31秒前
Orange应助涛tao采纳,获得10
31秒前
LaTeXer应助曾诚采纳,获得50
35秒前
alvin发布了新的文献求助10
35秒前
朱朱朱完成签到,获得积分10
36秒前
小手揣兜完成签到,获得积分10
38秒前
诗谙发布了新的文献求助10
39秒前
40秒前
冷静雨南完成签到 ,获得积分10
40秒前
ff发布了新的文献求助10
44秒前
萤火之森完成签到 ,获得积分10
45秒前
wwwww完成签到,获得积分10
46秒前
诗谙完成签到,获得积分10
49秒前
冷傲凝琴发布了新的文献求助10
50秒前
52秒前
ff完成签到,获得积分10
53秒前
yznfly应助趣多多采纳,获得50
53秒前
半夏发布了新的文献求助10
57秒前
CodeCraft应助mSnBmaterial采纳,获得10
57秒前
大力出奇迹完成签到,获得积分10
59秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396