Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

计算机科学 学习迁移 加权 人工智能 机器学习 特征(语言学) 深度学习 多源 数据挖掘 GSM演进的增强数据速率 分歧(语言学) 先验与后验 医学 语言学 哲学 统计 数学 认识论 放射科
作者
Yilun Jin,Kai Chen,Qiang Yang
标识
DOI:10.1145/3534678.3539250
摘要

Deep learning models have been demonstrated powerful in modeling complex spatio-temporal data for traffic prediction. In practice, effective deep traffic prediction models rely on large-scale traffic data, which is not always available in real-world scenarios. To alleviate the data scarcity issue, a promising way is to use cross-city transfer learning methods to fine-tune well-trained models from source cities with abundant data. However, existing approaches overlook the divergence between source and target cities, and thus, the trained model from source cities may contain noise or even harmful source knowledge. To address the problem, we propose CrossTReS, a selective transfer learning framework for traffic prediction that adaptively re-weights source regions to assist target fine-tuning. As a general framework for fine-tuning-based cross-city transfer learning, CrossTReS consists of a feature network, a weighting network, and a prediction model. We train the feature network with node- and edge-level domain adaptation techniques to learn generalizable spatial features for both source and target cities. We further train the weighting network via source-target joint meta-learning such that source regions helpful to target fine-tuning are assigned high weights. Finally, the prediction model is selectively trained on the source city with the learned weights to initialize target fine-tuning. We evaluate CrossTReS using real-world taxi and bike data, where under the same settings, CrossTReS outperforms state-of-the-art baselines by up to 8%. Moreover, the learned region weights offer interpretable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
smottom应助LYL采纳,获得10
刚刚
天天快乐应助cryjslong采纳,获得10
1秒前
1秒前
沉默的基因完成签到,获得积分10
1秒前
豌豆射手发布了新的文献求助10
1秒前
zhoufz发布了新的文献求助10
2秒前
科研通AI6.1应助summing采纳,获得10
2秒前
2秒前
桢桢树发布了新的文献求助10
3秒前
Xilli完成签到 ,获得积分10
3秒前
科研通AI6.1应助三虎科研采纳,获得10
3秒前
4秒前
Weathing完成签到 ,获得积分10
4秒前
4秒前
圆锥香蕉发布了新的文献求助30
5秒前
5秒前
5秒前
liandli123完成签到 ,获得积分10
6秒前
xiaoyuzi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
高高的书本完成签到 ,获得积分10
7秒前
7秒前
8秒前
脑洞疼应助xiao采纳,获得10
8秒前
Dylan发布了新的文献求助10
8秒前
8秒前
old赵应助小虎采纳,获得10
10秒前
wsysweet发布了新的文献求助10
10秒前
Hello应助heyheybaby采纳,获得10
10秒前
11秒前
hyw发布了新的文献求助80
12秒前
tzr应助怕孤独的苑博采纳,获得10
14秒前
qvb完成签到 ,获得积分10
14秒前
14秒前
可靠的芒果完成签到,获得积分10
15秒前
柔弱雅彤发布了新的文献求助10
15秒前
可爱的函函应助初一采纳,获得10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106