已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

计算机科学 学习迁移 加权 人工智能 机器学习 特征(语言学) 深度学习 多源 数据挖掘 GSM演进的增强数据速率 分歧(语言学) 先验与后验 医学 语言学 哲学 统计 数学 认识论 放射科
作者
Yilun Jin,Kai Chen,Qiang Yang
标识
DOI:10.1145/3534678.3539250
摘要

Deep learning models have been demonstrated powerful in modeling complex spatio-temporal data for traffic prediction. In practice, effective deep traffic prediction models rely on large-scale traffic data, which is not always available in real-world scenarios. To alleviate the data scarcity issue, a promising way is to use cross-city transfer learning methods to fine-tune well-trained models from source cities with abundant data. However, existing approaches overlook the divergence between source and target cities, and thus, the trained model from source cities may contain noise or even harmful source knowledge. To address the problem, we propose CrossTReS, a selective transfer learning framework for traffic prediction that adaptively re-weights source regions to assist target fine-tuning. As a general framework for fine-tuning-based cross-city transfer learning, CrossTReS consists of a feature network, a weighting network, and a prediction model. We train the feature network with node- and edge-level domain adaptation techniques to learn generalizable spatial features for both source and target cities. We further train the weighting network via source-target joint meta-learning such that source regions helpful to target fine-tuning are assigned high weights. Finally, the prediction model is selectively trained on the source city with the learned weights to initialize target fine-tuning. We evaluate CrossTReS using real-world taxi and bike data, where under the same settings, CrossTReS outperforms state-of-the-art baselines by up to 8%. Moreover, the learned region weights offer interpretable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助幺零零采纳,获得10
1秒前
gomm完成签到,获得积分10
1秒前
2秒前
缥缈斓发布了新的文献求助10
2秒前
2hi完成签到,获得积分10
5秒前
passerby完成签到,获得积分10
5秒前
6秒前
木木发布了新的文献求助10
7秒前
一味地丶逞强完成签到 ,获得积分10
8秒前
9秒前
9秒前
lan__发布了新的文献求助10
12秒前
留胡子的严青关注了科研通微信公众号
14秒前
14秒前
呜呜啦啦完成签到 ,获得积分10
15秒前
张涛发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
20秒前
20秒前
Mr贱包子发布了新的文献求助10
21秒前
21秒前
鱼宇纸完成签到 ,获得积分10
22秒前
Hanny发布了新的文献求助10
22秒前
摩天轮完成签到 ,获得积分10
23秒前
知性的笑柳完成签到,获得积分10
23秒前
张雨欣完成签到 ,获得积分10
24秒前
24秒前
25秒前
脑洞疼应助精明向梦采纳,获得10
26秒前
充电宝应助善良的冥茗采纳,获得10
27秒前
27秒前
xxsw发布了新的文献求助100
28秒前
小蘑菇应助zhou采纳,获得10
28秒前
Mr贱包子完成签到,获得积分10
29秒前
Richard完成签到,获得积分10
29秒前
苹果发布了新的文献求助10
30秒前
nanniyi发布了新的文献求助10
32秒前
独特的半芹完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052025
求助须知:如何正确求助?哪些是违规求助? 4279186
关于积分的说明 13338853
捐赠科研通 4094546
什么是DOI,文献DOI怎么找? 2241115
邀请新用户注册赠送积分活动 1247454
关于科研通互助平台的介绍 1176596