Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

计算机科学 学习迁移 加权 人工智能 机器学习 特征(语言学) 深度学习 多源 数据挖掘 GSM演进的增强数据速率 分歧(语言学) 先验与后验 医学 语言学 哲学 统计 数学 认识论 放射科
作者
Yilun Jin,Kai Chen,Qiang Yang
标识
DOI:10.1145/3534678.3539250
摘要

Deep learning models have been demonstrated powerful in modeling complex spatio-temporal data for traffic prediction. In practice, effective deep traffic prediction models rely on large-scale traffic data, which is not always available in real-world scenarios. To alleviate the data scarcity issue, a promising way is to use cross-city transfer learning methods to fine-tune well-trained models from source cities with abundant data. However, existing approaches overlook the divergence between source and target cities, and thus, the trained model from source cities may contain noise or even harmful source knowledge. To address the problem, we propose CrossTReS, a selective transfer learning framework for traffic prediction that adaptively re-weights source regions to assist target fine-tuning. As a general framework for fine-tuning-based cross-city transfer learning, CrossTReS consists of a feature network, a weighting network, and a prediction model. We train the feature network with node- and edge-level domain adaptation techniques to learn generalizable spatial features for both source and target cities. We further train the weighting network via source-target joint meta-learning such that source regions helpful to target fine-tuning are assigned high weights. Finally, the prediction model is selectively trained on the source city with the learned weights to initialize target fine-tuning. We evaluate CrossTReS using real-world taxi and bike data, where under the same settings, CrossTReS outperforms state-of-the-art baselines by up to 8%. Moreover, the learned region weights offer interpretable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6.1应助Mcarry采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
清欢渡完成签到,获得积分10
5秒前
哈哈哈哈发布了新的文献求助10
6秒前
8秒前
8秒前
dingyn-2发布了新的文献求助10
9秒前
11秒前
鸿俦鹤侣完成签到,获得积分10
12秒前
12秒前
张雅露完成签到,获得积分10
13秒前
17秒前
17秒前
陈龙发布了新的文献求助10
18秒前
科研通AI6应助puss123采纳,获得10
19秒前
dingyn-2完成签到,获得积分10
21秒前
热带瑜完成签到 ,获得积分10
22秒前
蓝天应助房产中介采纳,获得10
22秒前
紫萱发布了新的文献求助10
23秒前
23秒前
coolkid应助小思怡采纳,获得10
23秒前
24秒前
科研通AI6.1应助hupx采纳,获得10
24秒前
zipzhang完成签到 ,获得积分10
24秒前
小小Li完成签到,获得积分10
25秒前
慕青应助RONG采纳,获得10
27秒前
搜集达人应助哈哈哈哈采纳,获得10
27秒前
qinqin发布了新的文献求助10
29秒前
29秒前
壮观沉鱼完成签到 ,获得积分10
30秒前
31秒前
YY完成签到,获得积分10
31秒前
英姑应助lalala采纳,获得10
32秒前
swimswim完成签到,获得积分10
32秒前
33秒前
星辰大海应助Baccano采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812